
MARCH 1993

........ - --_--__o _½-_ _

_

(NASA-TM-4_67) THE dr: A PROPOSED

DATA FORMAT STANDARD (NASA) 181 p

N93-22810

Unclas

H1/59 0153701

I

2

2 _ - "_- 2-2 2-- __

- . _._-2 __,._.__ --__

H

2

NASA Technical Memorandum 4467

df: A Proposed Data Format Standard

Leslie R. Lait

Universities Space Research Association

Columbia, Maryland

Eric R. Nash

Applied Research Corporation

Landover, Maryland

Paul A. Newman

Goddard Space Flight Center

Greenbelt, Maryland

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1993

Contents

2

Introduction 1

1.1 Issues to be Addressed 3

l.l.! Towards a Standard Format 3

1.1.2 Away fi'om a Standard l%rmat 5
1.1.3 Reconciliation 10

1.2 '|'he "dr" format 1 i

Specification of the Format
2.1

2.2

2.3

2.4

13

Definitions and Concepts 13
Overview of the Dataset Structure 16

2.2.1 Dataset Structure 17

2.2.2 Record Type Descriptions 18
Elucidation 21

2.3.1

2,3,2

2.3.3

2.3.4

2.3.5

Record

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

2.4.8
2.4.9

2.4.10

2.4.11

How dimensions are specified 21
Indices 22

Auxiliary Information 2,5
Audit Trail 27

Processing Codes 28
Type Format Specifications 28
TEST 29

OBJDESC 33

AUDIT 3,5

INFOSPEC 3,5

COMMENT 36

DIMSPEC0 37

DIMSPEC1 38

DIMSPEC2 3.9

DIMSPEC3 39

DESCRIP0 40

DESCRIPI 41

iii

PRE@EDtNG PAGE BLANK NOT RLMED

iv Ol FENTS

g

=

=

5

2.4.12 DESCRIP2 43

2.4.13 DESCRIP3 45

2.4.14 DESCRIP 47

2.4.18 DESCVAL 49

2.4.16 DESCSUP 50

2,4,17 BADVAI 51

2.4.18 PROCSPEC 53

2.4.19 PROCFORM 55

2.4.20 PROCVAI 55

2.4.21 PROCDUP 56

2.4.22 AUXSPEC 57

2.4.23 AUXRANGE 59

2.4.24 AUXVAL 61

2,4.2,5 AUXSUP 62

2.4.26 PAKSPF, C 63

2.4.27 PAKFORM 65

2.4.28 PAKVA1 6,5
2,4.29 COM PSPEC 66

2.4.30 COMPLEN 67

2.4.31 COMPFORM 67

2.4.32 COMPVAI 67

2.4.33 REGDAT 68

2.4.34 PAKDAT 68

2.4.35 COMPDAT 68

3 Discussion and Examples of tile Format 69
3.1 TEST records 69

3.1.1 Silicon Graphics Iris workstation, using C 70

3.1.2 VAX running VMS using Fortran 71
3.2 Dimensional Levels 73

3.2.1 Example 1. Scalar (Temperature) 73

3.2.2 Example 2. Vector (Wind) 80

3.2.3 Example 3. Tensor (Wind Stress) 87
3.2.4 Example 4. Unusual Data Object (Ozonesondes) , . 89

3.2.5 Example 5. Nonauthoritative Dimension Descriptors

(Ozonesondes) 93
3.3 START and END Fields 100

3.3.1 DESCRIP1 Case 100

3.3.2 BADVAL Case 103

3.3.3 DESCRIP3, PROCSPEC, PROCDUP, AUXSPEC,
and PAKSPEC Cases 106

3.4 Audit Trail 108

CONTENTS

A

B

3.5 Auxiliary Information 109

3.5.1 F_:ample 1. Referring to a Single Dimension, Applied
to a Single Dimension I09

3.5.2 Example 2. Referring to a Single Dimension, Applied
to Multiple Dimensions 112

35.3 Examl)le 3. Referring to a Single Dimension, Al)plicd
to Multiple Dimensions and Subsections of the Data ll2

3.5.4 Example 4. Referring to Multiple Dimensions, Ap-
plied to Multiple Dimensions and Subsections of the

Data 118

Pros and Cons 123

4.1 How Well Did We Meet Our Design Goals? 123
4.2 Questions and Answers 125

Numeric Codes

A.1 Centrally Defined Codes
A.l.1

A.1.2

A.1.3

A.1.4

A.I.5

A.1.6

A.1.7

Data Format Codes

Site Identifier Codes

Quantity Codes

Unit Codes

Packing Codes

Supplemental Codes

Compression Codes
A.2 Locally Defined Codes

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

Task Codes

Data Source Codes

Processing Codes

Local Quantity Codes

Local Unit Codes

INFOSPEC Record Bytes

129

129

129

133

135

136

141

143

143

143

144

144

145

145

145

145

Implementation Notes
B.1

B.2

B.3

147

Standard library routines 147

Numeric Codes 148

File Naming Conventions 151

B.3.1 Fields 151

B.3.2 Delimiters 153

B.3.3 Backus-Naur Form 153

C Future Enhancements 157

vi CONTENTS

D Miscellaneous Items 159

D. 1 Trademarks 159

D.2 Acknowledgements 160

Bibliography
161

Index 162

Chapter 1

Introduction

One of the underappreciated benefits of computer technology in scientific

research is the exchange of data among different research groups. The abil-
ity of relatively small physical devices to store and retrieve vast amounts of

information has opened up new methods of collaboration between scientists

which were unthinkable in the days of personal journals stuffed with long
lists of hand-written numbers. We believe that the cross-fertilization of

ideas engendered by these new capabilities can only aid scientific progress.

Too often, however, the technology is not used to best advantage. Typ-

ically, a researcher will mail to a colleague a reel of magnetic tape or a
diskette with a data file written on it, accompanied by a photostatic copy

of a document outlining the file format. If the recipient is fortunate, a

sample program to read the data will be included as well. More often

than not, however, the document will be obsolete and fail to reflect the

actual format of the data. Also, the sample program will be filled with

mysterious local conventions and unusual subroutines--crucial to success-

ful operation--which are unknown outside the colleague's site.

If the recipient, through the application of clever graduate students,

finally manages to crack the code on this digital Rosetta Stone, he is likely to

get requests from others of his colleagues for the data (with the permission

of the data's originator, of course). Many of the caveats attached to the

data by the first scientist will have been forgotten by this time and hence

will fail to be passed along to these third parties, for whom the warnings
may have critical relevance.

Add to these dif_culties the more computer-specific problems of incom-

patible media, binary floating-point representation, machine word size, and

so forth, and one has a significant obstacle to data exchange.

The use of a standard file format can reduce or eliminate many of these

2 CHAPTER 1. INTRODUCTION

problems. By definition, a standard format call be read by a diverse group
of machines and people. In addition, a properly designed format will contain

enough self-documentation that the other scientists can not only read the

data, but make some sense of it as well.

Several such standards have been promoted in receul, years

[NCSA Software Tools Group, 1989], [Rew, 1990], addressing varying

tradeoffs between the conflicting needs and goals of a standard format.

Some have emphasized, for example, portability of data over computer net-
works to the detrimeut of all other consideratioas. Others have insisted

that the entire format, especially all metadata, be in what they consider

"human readable" form. Still others have attempted to impose a particular

paradigm upon the data; users are expected to think of their data in the

ways that the format designers demand.

Unfortunately, the tradeo_s imposed upon these formats by their cre-
ators often violate scieutists's needs. The form that the data files take

should be driven by the needs of the research, and those needs vary from

grou !) to groul). Computer programmers are not physical scientists, more-

over, and frequently misunderstand what those scientists require. What is

needed is a data format which will leave strategic decisions and paradigm
choices in the hands of those who will actually be using the data sets.

The file format proposed herein is intended to satisfy this requirement.

Its creators are practicing scientists, rather than computer professionals,

and thus it. was designed at every step to address the actual needs of working

scientists, rather than the mere perception of those needs by computer

programmers. This format imposes no paradigm, no grand stratagem for

data management. Rather, it seeks to provide a common language to allow

scientists to express their data in the way they think is best. As much

as possible, strategic decisions and tradeoffs are left in the hands of the
users, since the wisdom of each such decision depends upon a user's specific

application.

We term this format "df", and this document describes it. This first

chapter discusses some of the issues involved in choosing or designing a

standard file format; programmers only interested in implementing the df

format itself may wish to skip to the next chapter. Subsequent chapters

define the format, give examples to clarify some of the concepts introduced,

and discuss how well the df format meets its design criteria. Finally, a set

of appendices is included to aid in implementing software to read and write

this format. The second and later chapters are written primarily for use by

programmers; scientists and managers may find them uninteresting.

1.1. ISSUES TO BE ADDRESSED 3

1.1 Issues to be Addressed

In trying to create a new file format, several sets of conflicting and mutually

contradictory goals must somehow be reconciled.

For example, the files should be completely self-documenting, but that

entails writing all sorts of information which will cause the file size to swell.

On tile other hand, the data should be compact, since there will be many

files, and it is desirable to conserve disk space.

One would like the data to be portable, so that files can be moved from

machine to machine without having to convert the data. However, reading

the files ought to be efficient, to minimize run time and CPU charges.

Ideally, the new data files would adhere to some sort of universal stan-

dard. Individual projects and users, though, should be able to customize

aspects of the files to meet their special needs.

Any file format specification reflects a tradeoff or compromise between

these (and possibly other) sets of mutually contradictory goals. We wish

to find the file format whose compromises best meet our needs.

1.1.1 Towards a Standard Format

One should begin by asking the fundamental question, "Why use a standard

format?" What does one gain by using such a format over the special-

purpose, machine-specific formats commonly used in the past?

Three major reasons come to mind. The first is portability; a standard

format makes it easier to move datasets to the new computers one acquires

over the years, as well as to machines at collaborating sites. The second

reason to use a standard format is so that the contents of a strange file can

more readily be understood. Such a file may not necessarily be from a for-
eign site; one's own datasets, inspected years after the original programmers

and project scientists have passed into the dust of history, can seem very

unfamiliar. The third reason is to avoid re-inventing a new format each

time a new dataset appears: using a standard format allows greater re-use

of software to read and write data and also permits the construction of a set
of tools which can be applied to a wide variety of data. A standard format,

if it is to be useful, must therefore possess certain qualities which fulfill

these three basic needs: portability, understandability, and reusability.

Portability

First, the format must be portable between machines. By "portable," we

mean simply that one should be able to read the file, not necessarily make

sense of its contents (that falls under "understandability," discussed below).

4 CHAPTER 1. INTRODUCTION

Ideally, portability would require that the dataset be written in terms of

some explicitly portable binary data representation, such as the eXternal

Data Representation (XDR) promoted by Sun Microsystems, Inc. Data
could then be moved from machine to machine without any need for con-

version.

Even if one relaxes this condition and permits native binary representa-

tions, though, portability also requires that a standard format cannot rely

on special file types or file record formats which are unique to a single type

of machine. That is, the concepts behind data structures must be uniform

across machines, even if the implementation of those concepts is permitted

to vary from machine to machine. For example, all machines used in sci-

entific data processing have integer and floating-point data types, however

differently they may be implemented. Few machines, on the other hand,
have special representations for irrational numbers; one should then exclude

irrational numbers from the data types permitted in the file.

In fact, because of the wide variation in the capabilities of machine op-

erating systems (from personal computers to supercomputers), portability
considerations require that any data file format specification be limited to

the information written into a file, and not concern itself with how files are

named or how they are arranged and manipulated within a data system.
The format should not even depend on the concept of "file;" it should be

possible to implement it using any sort of bit stream.

Understandability

Secondly, a standard format must in some sense be understandable, or self-

describing. To begin with, a file should always identify itself as conforming
to the standard--the user must somehow always be able to test simply

whether a given file was written in the format. One should also be able to
determine the binary representation used in the file, whether it was written

in a given machine's native binary data representation or whether it was
written in a portable representation such as XDR. For example, if a site

using a Unix workstation obtains a dataset from an IBM mainframe, the
Unix site should be able to determine if the IBM file is in the standard

format, as well as what binary data representation was used (the IBM site

might have obtained the dataset from a Cray site, after all).
A standard format should also be self-documenting in the more usual

sense: metadata (data about the data) should be contained within the file.
This documentation must include some form of identification of the data in

the file as well as its units, dimensional structure, and any special processing

notes and/or comments of which users of the data should take note. (Some

of these notes will apply only to a subset of the data--provision must be

1.1. ISSUES TO BE ADDRESSED 5

made for specifying such subsets.) Additionally, bad or missing data points

in a regular field must somehow be flagged.
In addition, it would be most useful to have an audit trail mechanism

to maintain a sort of "family tree" detailing the lineage of a dataset which

has been derived from other datasets. Thus, for example, the output from
model runs whose initializations were obtained from various data files can

be identified clearly,

Reusability

By definition, a standard file format relieves the user of the necessity of

designing a new format for each new dataset. In addition, software which

reads or writes the standard format is easily re-used for each new dataset

created. This makes much more efficient use of scientists' and program-

mers' time: instead of learning the detailed bit structure of many different

formats, they need only learn (and implement software for) one.

1.1.2 Away from a Standard Format

ttaving examined briefly the advantages of standard formats (as well as the

attributes a format must possess to enhance those advantages), one must
next consider some of the disadvantages of standard formats, in order to

select a design which minimizes them.

Inflexibility

The fundamental difference between a standard and a custom format, of

course, is who specifies the format of a file. With a standard, the defining
authority specifies the format for everyone; without a standard, each user

is free to design his or her own. Of course, whenever a user lets someone

else design a format for his own data, he runs a very real risk of losing

capabilities he needs to accomplish his task. That is, it is possible for a
standard specification to be too complete, too narrowly defined. And if it

is so tightly defined that it fails to provide the flexibility needed by the

user, then the standard will be ignored by that user. (Standards which are

ignored by their users soon cease to be standards.)

But, how tight is too tight? How much flexibility is too much? The
answer lies in the ability of the user to make his or her own choices about

what information can be incorporated into the file.

In writing a data file, a host of tradeoffs and compromises have to be

made. If a standard file format is to meet the unique needs of its users,

then they must to a large extent be able to make their own strategic choices

6 CItAPTER 1. INTRODUCTION

between various conflicting goals. Thus, only a basic core format should be

specified by a central defining authority, within which the user should have

freedom to specify how the data are to be represented.

That is to say, a user must be able to say anything she needs to say, but

all users should speak tile same"language" (file format).

Another, related, issue is whether a user can express any data needed in

the standard format. Modelling a data field as a simple array of variables

may not be the most appropriate approach in every case. One can perhaps
think of each datum as a cluster of component items located in some co-

ordinate space; the structure of such a cluster--its dimensions constitute
what we call "Level 0" dimensions. Examples might be the components of
a wind stress tensor or a wind vector. Each datum is also associated with a

set of coordinates specifying its location; we can split these dimensions up

into those which vary within a data record in the file and those which vary
between data records. We call these "Level 1" and "Level 2" dimensions,

respectively. Finally, there are those coordinates at which the data are not

located, but over which the data have been averaged in some way; these
we call "Level 3" dimensions. Any standard file format must distinguish

between and allow for the specification of any or all of these various levels

of dimensions.

A user must also be able t-o label or flag any arbitrary subset of the data

with an informational tag of some sort.

High Overhead

Another disadvantage associated with standard file formats is the overhead

involved in reading and writing them. Data written in a portable binary

representation must be converted to a machine's native representation be-

fore calculations can be performed. The metadata for self-documentation

eats up valuable disk space. As a result, users in search of high storage

density and performance end up avoiding standard formats.

The binary representation issue can be dealt with by allowing native

machine-dependent formats. In this case, however, the file must still contain

information identifying the file as being in the standard format written in a

particular native representation, and that information must still be readable

from any machine. Recalling our previous example, a Unix system, having
retrieved a file from an IBM mainframe, should be able to tell that the file

is written in the standard format using Cray native binary representations.

It is reasonable, then, not to demand that a standard format exhibit

strict binary compatibility across machines: if necessary, one can convert
one machine's native binary format to another's. What is important is to

ensure that one knows the type and structure of the data one is converting,

1.1. ISSUI_,S ' TO BE ADDRESSED 7

and that the data types being converted (as opposed to the implementa-

tion or representation of those data types) not be proprietary to a single
machine. The use of a file format standard satisfies the first condition;

using only portable data types satisfies the second. Types such as charac-

ters, bytes, signed and unsigned integers, and single and double precision

floatillg-point meet this crit(u'ion. Complicated stl'uctures and pointers do
not.

Allowing native binary representations in the dataset format will elimi-

nate the guarantee of being able to read a dataset fresh off a network, but

with an extra binary representation conversion step added, the overall goal

of being able to port the dataset easily to new machines is met. Further-

more, for those applications in which true "out of the box" readability is

required, use of a portable representation should still be allowed.

Another source of computational overhead, aside from data conversion,

is requiring the user to use a standard software package. Of course, stan-

dard packages are, in themselves, good and useful. They encourage people
to read and write tile standard format who do not wish to expend the time
or effort to understand the format and create their own readers and writ-

ers. Nevertheless, no set of subroutines can operate at maximum efficiency

in all applications. If users require high performance, they should be able

to consult the standard specification and write their own I/O software.

Documenting the reading and writing subroutines only, while keeping the

underlying file format secret, prevents these users from adopting the stan-
dard.

In addition to computation overhead, standard file formats are often

associated with greatly increased disk storage requirements. Aside from the

increased storage requirements of certain portable binary representations,
information for self-documentation accounts for much of this file-size bloat.

Users manipulating a handful of toy datasets on their personal comput-

ers may be able to live with the larger file sizes. On a large supercomputing

system, however, with ten years or more of daily global meteorological data,

the extra disk space required can be prohibitive.

How can one squeeze the files down?
Metadata written as plain text generally requires much more storage

than that written as, say, integer codes. In seeking to reduce this overhead,
then, one must examine the question of whether the metadata should be
machine-readable or human-readable.

While some may claim that metadata must exist in humanly-readable

form, it should be pointed out that the only storage media which allow

humans to read the data directly are punched cards and paper tape, neither

of which is used in today's research environment. Most commonly, data are

stored as microscopic magnetic or optical patterns in some special material,

8 CtlA PTER I. INTRODUCTION

and a computer is required to read them. Thus, tile question becomes
not, "Shall the metadata be human-readable, but rather "What kind of

computer tool shall be used to inspect the metadata?"

The case for making metadata in "human-readable" form is that a sim-

ple text editor can be used to inspect it, and everybody has a text editor.
Unforttmately, m_uly ('ditors will choke on binary data whi(:h may be found

elsewhere in tile file (and if the entire file, including all data, is written
as text, then many editors will still be unable to hold the entire file in

memory). Therefore some specialized tool must be written and distributed

which will allow one to browse or inspect a dataset. As long as such a tool
must be used, however, it really does not matter how human-readable the

dataset is; what matters is how human-readable the tool's output is.
Furthermore, metadata encoded as text comments embedded in a data

file tend to be exclusive towards a single language, such as English; this can

be a disadvantage when dealing with an international community.

The case for machine-readability, on the other hand, can be made by

considering the direction in which scientific data processing is moving. In
the past, many datasets were relatively small - small enough for one person

to comprehend entirely. These were the sorts of datasets which had been

found in laboratory notebooks, and storing and processing such datasets

on computers was mainly a matter of convenience. With the advent of

satellite data and output from sophisticated numerical models, the volume

of datasets has grown, so that computer processing has become necessary

rather than merely convenient; no one person could hope to perform calcu-

lations by hand on such datasets. In the future, one should expect more of

the "grunt work" to be taken over by computer tools of increasing sophis-

tication and speed. It would take the advent of true artificial intelligence
for machines to do science--no foreseeable machine will be able to detect

trends in atmospheric constituents, for example--but more of the routine,

mechanical work (such as "Find the global temperatures on the 50-millibar

pressure surface for 12 January 1989, and plot them up for me.") will be
done by computers. It is profitable therefore to make the metadata rela-

tively simple for a computer to understand. Naturally, this has to be limited

in some respects; careful explanations of unusual experimental conditions

are best described in human-readable terms, since they tend to be unique

and difficult to encode. But such common items as data identifications,
units, and dimensions should be machine-readable.

Choices made on this issue, of course, affect those made on others. If

a special machine-readable code is used for, say, data identification, then

one must also decide whether the data ID codes are defined by a central

authority or by each user. Additionally, one must decide where to put the

machine-to-human translations of the data ID codes. Again, a reasonable

=

1.1. ISSUES TO BE ADDRESSED 9

compromise is for a basic framework to be set up by a central authority, with
the ability for users to fit their own code definitions into that framework. In

this way, even if a code definition used in a foreign dataset is missing from a

site's own list of code definitions, a clever utility program could make some
sense of what the code means.

Another way to make files smaller would be to allow for packing and

compression of data. By "packing," we mean the scaling of floating-point
data to smaller integers occupying less storage. By "compression," we mean

the reduction of redundancy in a bit stream by such algorithms as Lempel-

Zif. The format should probably allow only a few standard methods, and,

once the method is specified by the user, the data should be packed and/or

compressed transparently by the writer subroutines (and, of course, uncom-

pressed and unpacked transparently by the reader subroutines).

Complexity

Physical scientists as a class have long demonstrated a propensity for

choosing short-term benefits over long-term considerations. Thus, they

frequently prefer to dump their data arrays straight from their analysis

programs with little or no thought of portability or understandability; it is

just simpler to do it that way.

When a standard format is used, though, an added degree of complexity
is introduced. Data and metadata have to be written out in a certain order

with a certain structure. The more general and flexible a standard is, the

more complicated writing its datasets will be, since the structures of the

data must somehow be described instead of being assumed. Even if tile

format is hidden behind a standard library of I/0 routines, learning to call

those routines (or even linking with the appropriate libraries!) represents
an obstacle for many scientists.

Limited Languages/Systems

As mentioned above, some standard formats hide the actual format of the

file and force the user to use a standard software package to access it.

In addition to the performance problems this entails, the user is also left

dependent upon the efforts of the group writing the package to create a

version for his or her language or computer system of choice.

This group usually takes the position, "With our limited resources, we

cannot support every language/machine in existence, and there is just not

enough demand for the version you want." Of course, without a version

for that language or machine, demand stays low, and the standard format
remains unused.

10 CIIAPTER i. INTRODUCTION

How Do We Know it is Standard?

In some formats, the file format itself is the only thing specified, and users
are free to write their own software to read and write the data files. This

allows customization and streamlining, but it also opens up the possibility

that the user will g_,t it wrong, that tlw files thus produced will adwn'tise

themselves as being in the format when in fact, they do not conform.

This problem can be substantially reduced, however, by the use of some
sort of checkout utility to verify a newly created file.

1.1.3 Reconciliation

We have seen that standard file formats have both advantages and disadvan-

tages. By choosing format characteristics which maximize the advantages

and minimize the disadvantages, one can arrive at a format which is usable
in ahnost all circumstances.

The trouble is, though, that many of the advantages (such as self-

documentation) are in direct conflict with reducing the disadvantages (such

as reducing the file sizes). One must therefore choose some sort of tradeoff

between conflicting goals.

It is tempting under these circumstances to simply choose a tradeoff

somewhat arbitrarily and force it upon the users. Many users--those whose
needs the format does not meet--will walk away. Worse, others will design

a different format based on a different set of tradeoffs, and one ends up with

a whole series of (incompatible) "standards." This is exactly the situation

which scientists face today.

Several scientific communities have proposed their own standard formats

[Ramirez, 19911, [Pullen, 1990], but for wider interaction and exchange of
data between disciplines, a more general format is needed.

If a standard format is to be successful, it must be used on a large

number and a wide variety of datasets. One should not restrict its use

to a small set of toy-like data files viewed and manipulated on personal

computers (PCs) only. Likewise, it would be foolish to design a format to
work only on massive databases on large mainframe computers. Rather, we
need a format which is usable across the board, since files from PCs will be

submitted to supercomputers, and small pieces of supercomputer datasets

will be split off and sent to individuals using PCs.

The standard format must be flexible enough, then, for users to make

their own strategic choices between efficiency and portability, between self-

documentation and file size, and between the ease of using standard I/O

subroutines and the performance increase gained with custom software.

A high degree of user-specifiability is necessary, then, within a basic core

I

1.2. THE "DF" FORMAT 11

format, or framework, specified by a central authority. This includes the

ability for a user to include any data which needs to be included.

Again, a user must be able to say anything he or she needs to say, but

all users should speak the same "language."

1.2 The "df" format

The creators of this proposed standard did not lightly reject the other for-

mats. The time and effort in designing a standard format is substantial,

and they did everything ill their power to avoid it. Nevertheless, they have

reluctantly conchtded that the existing formats which they have encoun-

tered do not meet the criteria that they believe are essential for a truly
usefid standard format for scientific data. This is unfortunate, since it adds

yet another proposed standard to the growing list. Yet, if our needs as
scientists are to be met, it seems necessary.

This is not to say that the proposed format, which is called "df," is

the final word on the subject. While considerable thought went into imple-
mentation and efficiency issues, this standard will undoubtably have some

aspects whose implementation will make computer professionals groan, and

certain constructs may not be as elegant or efficient as those designed by
computer scientists. This standard should be viewed as an object lesson

or testbed for ideas, detailing some of the features scientists need in a file

format. If these features are incorporated into whatever format wins out in
the end, the effort devoted to this standard shall have been worthwhile.

The authors believe that good software and good standards should be

derived from a careful consideration of users' needs--not programmers'
needs, not programmers' ideas of users' needs, but the users' themselves.

Scientists should be consulted from the beginning, not near the end, of the

design process, and that consultation should continue through to the end.
Their real, perceived needs--in what ways do they think of their data? what

sort of premium do they place on disk space?--must be given paramount
importance. One does not begin by asking, "what do you think of this data

format?" One should begin by observing scientists as they collect, manip-

ulate, and analyze their data; from these observations, a clearer picture of

their needs can be obtained. (And an afternoon's interview will not suffice!)

We believe that flexibility and user-specifiability must be built-in from the

ground up, not tacked on as an afterthought.

The file format proposed herein strikes a balance between the conflicting
demands outlined above. Users and/or projects are allowed to determine

their own balance between efficiency and portability, and yet a single stan-
dard is adhered to in either extreme.

12 CIIAPTER 1. INTRODUCTION

For example, provision is made for portability of data where desired,
but where efficiency is preferred, machine-specific representations are used

(and are identified as such in the file). This standard also allows for various

compression and data-packing methods to conserve storage, again at the
discretion of the user. Bad or missing data are provided for, and other

sorts of processing notes and flags can be attached to specific subsets of the
data. A sort of audit trail is even provided, whereby datasets which are

derived from other datasets can have their entire family trees laid out for

the inspection of the users.

Also, and just as importantly, the format is flexible enough to be used

for a wide variety of data fields and disciplines.
This document describes the df format, defining the structure of the

bits which make up a dataset, explaining the concepts behind the format,

giving examples of its use, and discussing implementation issues. While this
introduction is intended for a wide audience, the rest of the document is

heavily oriented towards computer programmers. (Physical scientists who

are used to simply dumping their data arrays onto disk with no describ-

ing metadata should be forewarned: they will probably find the following

chapters somewhat tedious and overcomplicated.)

u

Chapter 2

Specification of the
Format

2.1 Definitions and Concepts

We define a datum to be a specific localized piece of information, consisting

of one or more components which may be of any numeric or string type.
Generally, both the datum and its individual components are identified
with a quantity and physical units. Data are distributed in some sort of

coordinate space indexed by one or more dimensional variables, each of

which varies independently of the others. This implies the use of a general

data array as our basic model of how data are accessed, with the proviso
that irregularly distributed data must also be accommodated. The various

dimensions which locate a datum, distinguishing it from other data, may
then be identified tentatively with indices into an array. These indices,

along with those which select components from a datum, tend to fall into
a few functional groups, which we refer to as dimensional levels.

We designate indices which select components within a datum as Level 0

dimensions. For example, a vector wind measurement might consist of the

three spatial components of the wind (pointing in the direction of longitude,
latitude, and pressure altitude); the index or variable which selects one

component from these three would comprise the Level 0 dimension of the
wind data.

The coordinates of a datum comprise the Level 1 and Level 2 dimen-

sions of the data. Data are most likely to be stored in groups, or records.

We therefore define the Level 1 dimensions as those coordinates which vary

within a record; they are considered to vary solely within a group of data

13

14 CHAPTER 2. SPECIFICATION OF THE FORMAT

and are by t_ature fixed and bounded. Level 2 dimensions are those coordi-

nates that vary across records. They are considered to vary across groups

of data and may be unbounded.

Carrying the above example forward, each wind measurement will have

a location in longitude, latitude, pressure, and thne a.ssociated with it.

Longitudes and latitu&'s might he considered fixed and bounded at, say,

every 5 degrees; it seems natural to store these data as a series of two-

dimensional arrays. The two dimensions, latitude and longitude, would

then belong to Level 1. The other coordinates, pressure and time, would

index these latitude-longitude arrays, and would therefore belong to Level 2.

Note that, if one chooses to store the data az three-dimensional arrays

(latitude, longitude, and pressure), then those three dimensions would be

Level 1, and only time would belong to Level 2. In other words, whether

a dimension belongs to Level 1 or Level 2 is determined by how the data

are stored, not by any intrinsic nature of the dimension. The nature of a
dimension may, of course, influence how the data are written: time, being

unbounded in most instances, will often be used as a Level 2 dimension.
This division into Level 1 and Level 2 dimensions also allows more flex-

ibility in storing the data: As the Level 2 dimensions change, the range of

the Level 1 dimensions may change as well. E.g., at different pressure lev-

els, our latitude-longitude arrays of wind measurements may be of different
sizes.

Finally, we also consider coordinates over which the data have been

averaged in some way. While not used as indices into a data array, such
dimensions are nonetheless extremely important in understanding the na-

ture of the data; we refer to these as the Level 3 dimensions. Continuing

with our example, we may average the wind components over a month. We

could indicate this averaging with Level 3 dimensions that identify each

day of the month which contributed data to the average.

By dimensional order, we mean the number of dimensions at a dimen-

sion level. Using our (non-averaged) wind vector example above, the orders
of tile Level 0, Level 1, and Level 2 dimensions would be: three (for the

East-West, North-South, and vertical components), two (for latitude and

longitude), and two (for pressure and time), respectively.
The actual values along each dimension where the data are defined

(not the data values themselves) we call the grid points of that dimension.
For our wind vectors, the longitude dimension might be defined at every

5 degrees from 0 E to 355 E; there would be 72 grid points along this
dimension. The latitudes vary from 90 S to 90 N by 5 degrees; this implies

37 grid points along the latitude dimension.
The rank of a dimension is the number of grid points along that dimen-

sion.

2. I. DEFINITIONS AND CONCEPTS 15

To fully describe the data with all its components and dimensions, we

need other information which we refer to as metadata (data about the

data). Metadata will identify the quantities and associated units that the
data and dimensions represent. We also allow for the use of metadata

in adding comment-type information to the data, as well as an audit trail;

information on processing, packing and compression; and information about

the physical form in which the data are stored.

In order to reduce the physical storage required by the metadata, to

make it more machine-understandable, and to reduce the language depen-

dencies that text comments impose, much of the metadata is stored in the

form of integer codes. Some of the codes are centrally defined and uni-

form across all data sites; these codes are described in Section A.1. Other

codes can be locally defined at a given site, and these are described in Sec-

tion A.2. While the codes and their meanings are defined as part of this

data format standard, we do not prescribe the form that the translation

mechanism between these codes and their human-readable equivalents must

take, although one current implementation based on using lookup tables is

outlined in Appendix B.
Processing information is metadata which describes how the data were

processed. For example, if a day of our wind data was missing, we might

decide to interpolate in time to fill in that day's data. The processing infor-
mation would consist of a code indicating time interpolation and providing

the starting and ending days of the interpolation.

Auxiliary information is information which refers to or supplements the

data. While processing information should be thought of as labels or tags

applied to sections of the data, the auxiliary information on the other hand

is more in the nature of a group of secondary variables which could not

stand on their own as data in their own right, but which by their nature
refer to the actual data. Examples would include instrument status words

and uncertainties (error bars) in the data.

Packing information provides for the reduction of floating-point data to

(usually smaller) integers by some scaling operation. This is different from

compression, which uses an algorithm (such as Lempel-Zif) to reduce the
data to a smaller, encoded sequence of bytes. Data can be both packed and

compressed. For example, we may take our wind measurements and scale

them at each pressure level to more compact integers. We could then use a
compression routine to compress thispacked data into a byte array whose

length is determined by the bit patterns in the data. To read the data, we

would first uncompress it and then unpack it using the metadata provided

in the specification of the winds.

The collection of the data, the specification of its dimensions, and its

metadata are collectively referred to as a data object.

16 CItA PTER 2. SPECIFICATION OF THE FORMAT

Finally, at tile highest level of organization, we define a dalaset as a

collection of data objects. Note that we avoid the use of the term "file,"

since we wish the proposed standard to be applicable to data storage and

access entities other than simple files on disk.

2.2 Overview of the Dataset Structure

=

A dataset written in the df standard consists of a series of records. A record

is defined to be a series of bytes which are to be read or written together.

An example would be a Fortran record as written with a single WRITE
statement. The concept of a record is especially important for certain

languages (such as Fortran) and for certain binary data representations
(such as XDR). On the other hand, a record might consist of a set of bytes
in a uniform bit stream with no delimiters. Each record defined in the df

format begins with a specific numeric code which identifies its type. Record

types are organized into functional groups. Within a group, and from group

to group, a rower numeric ID code generally indicates its placement further
towards the beginning of the dataset.

Because the df format should be usable with any storage architecture or

language, it was designed to function with purely sequential data streams

used with languages (such as Fortran) which need to know how long a
record is before it is read. These design constraints do not prevent datasets

from being accessed in a non-sequential fashion or by more sophisticated

languages, but the format must at least work for this lowest common de-
nominator.

In order that the next record type in a dataset be known (so that its

length is known as well), the order of the records is fixed. In addition, the

length of some records depends upon information read in previous records.

All of the information needed to read and decode the data.set is present

in the dataset. Metadata is recorded in appropriate records in the proper

record groups. Some groups are composed of only one record type, while

others consist of several. Some record types are mandatory, and others are

optional. Some types of records can be written more than once, and these

will be further indexed so that they can be processed in a particular order.
See Section 2.3.2 for a discussion of what indices mean in various contexts.

Following the metadata come the data records themselves. The infor-

mation in the previous records fully describe the structure and format of

the data, making it possible to read.

2.2. OVERVIEW OF THE DATASET STRUCTURE 17

2.2.1 Dataset Structure

The dataset structure may be specified in Backus-Naur Form as:

<Dataset> ::= <TEST> <Object> { <Object> }

<Object> ::= <OBJDESC> <AUDIT> [<INFOSPEC>]

(<COMMENT> } <DINSPECO> <DINSPECI> <DINSPEC2>

[<DIMSPEC3>] <DESCRIPO> <Dimgroupl>

<Dimgroupl> } <Dimgroup2> { <Dimgroup2> }

[<Dimgroup3> (<Dimgroup3> }]

<BADVAL> } { <Procgroup> } { <Auxgroup> }

<Regdata> I <Packdata> I <Compdata>

<Dimgroupl> ::= <DESCRIPI> <DESCVAL> [<DESCSUP>]

<DescEroup> }

<Dimgroup2> ::= <DESCRIP2> <DESCVAL> [<DESCSUP>]

(<Descgroup> }

<Dimgroup3> ::= <DESCRIP3> <DESCVAL> [<DESCSUP>]

(<Descgroup> }

<Descgroup> ::= <DESCRIP> <DESCVAL> [<DESCSUP>]

<Procgroup> ::= <PROCSPEC> [<PROCFORM> <PROCVAL>]

(<PROCDUP> }

<Auxgroup> ::= <AUXSPEC> <AUXRANGE> <AUXVAL> [<AUXSUP>]

<Regdata> ::= <REGDAT> { <REGDAT> }

<Packdata> ::= <Packgroup> { <Packgroup> } <PAKDAT>

{ <PAKDAT> }

<Compdata> ::= <Compgroup> <COMPDAT> (<COMPDAT> }

<Packgroup> ::= <PAKSPEC> [<PAKFORM> <PAKVAL>]

<Compgroup> ::= <COMPSPEC> <COMPLEN>

[<COMPFORM> <COMPVAL>]

18 CHAPTER 2. SPECIFICATION OF THE FORMAT

where <UPPERCASE> indicates a record type, <Hixedcase> represents a

group of records, braces ("{Y') indicate zero or more occurrences of what

they enclose, brackets ("l']") indicate zero or one occurrences of what they

enclose, and a vertical bar ("1") indicates a mutually exclusive choice among
options.

2.2.2 Record Type Descriptions

A brief overview of each of the record types follows. See Section 2.4 for the

details of each record type.

TEST provides all of tile system-dependent information which is necessary

for interpreting the bit patterns in the subsequent dataset records. It
also contains a magic number which identifies that the dataset is in
the df format.

OBJDESC describes a data object. It contains general information

needed by the other record types.

AUDIT provides for an audit trace of data objects which have been de-

rived from other data objects. See Section 2.3.4 for a discussion and

examples of the audit tree.

INFOSPEC is a record type that contains unrestricted user-specified in-
formation. See Section A.2.6 for details.

COMMENT contains user-specified information in the form of an 80-

character string. This allows for human-readable comments.

DIMSPEC0 specifies how the Level 0 dimensions of the data object are
indexed.

DIMSPEC1 specifies how the Level 1 dimensions of the data object are
indexed.

DIMSPEC2 specifies how the Level 2 dimensions of the data object are
indexed.

DIMSPEC3 specifies the number of DESCRIP3 records for the Level 3

dimensions of the data object.

DESCRIP0 describes the data or its component parts that each Level 0

dimension represents.

2.2. OVERVIEW OF TtIE DATASET STRUCTURE 19

DESCRIP1 describes each Level 1 dimension. This is the authoritative

descriptor for a Level 1 dimension.

DESCRIP2 describes each Level 2 dimension. This is the authoritative

descriptor for a Level 2 dimension.

DESCRIP3 describes each Level 3 dimension. This is the authoritative

descriptor for a Level 3 dimension.

DESCRIP provides an alternative, nonauthoritative description of any
Level l, Level 2, or Level 3 dimension. These descriptors are a means

of "renaming" grid points in terms which may be more meaningful to
the dataset's users.

DESCVAL contains the grid point values corresponding to a dimension

described by a DESCRIP1, DESCRIP2, DESCRIP3, or DESCRIP
record type.

DESCSUP contains supplementary information about a given dimension.
For example, if a dimension corresponds to an x or y coordinate in

a geographical map projection, then the coordinates of the map pole
would be specified here.

BADVAL specifies how missing or bad data are to be flagged in the data
records. The absence of BADVAL records implies that there are no

bad or missing data.

PROCSPEC provides a means for attaching special notes or processing

flags to subsets of the data. See Section 2.3.5 for more details.

PROCFORM specifies the format of the processing information in the
associated PROCVAL record. If the processing method used requires

no information values, then this record will not be present.

PROCVAL specifies the processing information as indicated in the asso-

ciated PROCSPEC record. If the processing method used requires
no information values, then this record will not be present.

PROCDUP allows for processing information specified by a previous

Procgroup to be applied over a different range of dimensions.

This record provides a shorter alternative to duplicating an entire
Procgroup with a different set of coordinate values.

AUXSPEC specifies the nature of the auxiliary information and how it

applies to the data. See Section 2.3.3 for more details.

2O CHAPTER 2. SPECIFICATION OF TIlE FORMAT

AUXRANGE specifies the dimensions the auxiliary information refers to
and which dimensions it varies over.

AUXVAL gives the actual auxiliary information itself.

AUXSUP gives certain supplemental values which may be needed to in-

terpret the auxiliary values.

PAKSPEC describes the method used to pack the data in the data object.

PAKFORM specifies the format of the packing information in the as-
sociated PAKVAL record. If the packing method used requires no

parameters, and no bad data are present, then this record will not be

present.

PAKVAL specifies the packing information as indicated in the PAKSPEC

record. If the packing method used requires no parameters, and no

bad data are present, then this record will not be present.

COMPSPEC describes the compression method used to compress the

data in the data object.

COMPLEN gives the length of each COMPDAT record of compressed
data.

COMPFORM specifies the format of the compression information in the

COMPVAL record. If the compression algorithm requires no param-

eters, then this record will not be present.

COMPVAL specifies the compression information as indicated in the

COMPSPEC record. If the compression algorithm requires no pa-

rameters, then this record will not be present.

REGDAT contains the actual data values, if the data have not been

packed or compressed. Each record contains the data over a single set
of values of the Level 2 dimensions: Level 1 dimensions vary within

a REGDAT record, while Level 2 dimensions vary between REGDAT
records.

PAKDAT contains the actual packed data values, if the data have been

packed. PAKDAT has the same structure (number of records, number
of data values in each record) as a REGDAT record, but it contains

packed data.

COMPDAT contains the actual compressed data values, if the data have

been compressed. Usually there will be only one COMPDAT record.

2.3. ELUCIDATION 21

2.3 Elucidation

2.3.1 How dimensions are specified

We consider the dimensions of a data object to be those quantities which

are used to select and categorize the data values. To understand the na-

ture of these dimensions, it may help to identify them with the indices of

a multi-dimensional array. (This paradigm has its limits, though: data
which cannot be described in terms of a regular array can nevertheless be

described in terms of these dimensions.) We have proposed four levels of
these dimensions:

Level 0 dimensions describe the components of the data (these dimen-

sions are unrelated to the position of a datum in a coordinate space).

Simple scalar data such as temperature would have a single Level 0

dimension containing a single grid point (i.e, A Level 0 of order 1
with a rank of 1). A two-component horizontal wind vector would

also have a single Level 0 dimension, but with two grid points (order

of 1, rank of 2). A wind stress tensor (a 3 × 3 matrix) would have

two Level 0 dimensions, each of which would have three grid points
(order of 2, ranks of 3 and 3). In terms of array indices, Level 0

dimensions select components at a fixed position. That is, a wind

stress tensor is considered to be a datum, and two Level 0 indices are

needed to select a single component of the tensor. Likewise, a wind

vector as a whole is a single item, but a Level 0 index would select

which component of the wind (North-South or East-West) is desired.

For temperature, there is only one component to select; this would

correspond to a single array index which can take only a single value.

(Because a N × M array is indistinguishable from a N x M x 1 array,

such an index is superfluous and can be omitted.)

Level 1 dimensions are those that occur within a single data record.

Level 2 dimensions are those that occur across data records. The Level 1

dimensions, together with the Level 2 dimensions, locate a datum
in a coordinate space. The difference between the two levels is that

Level 1 dimensions vary within a data record in the dataset, while
Level 2 dimensions vary between data records. If each data record

were read into a separate array variable, then every array would have

to have an index for each Level 0 and Level 1 dimension. Suppose,

for example, that a set of temperatures is written out in a series

of two-dimensional longitude-latitude grids, one for each day. The

resulting dataset would have two Level 1 dimensions--longitude and

latitude--plus one Level 2 dimension: time.

22 CtlA PTER 2. SPECIFICATION OF TIlE FORMAT

This distinction between the two levels may seem artificial, but it has

two advantages: first, it enables a program to read the data either

as a single large array variable (whose indices would correspond to
each of the Level 0, Level 1, and Level 2 dimensions), or as a series

of separate variables (whose array indices correspond to each of the
Level 0 and Level 1 dimensions, with the number of arrays calculated

from the Level 2 dimensions). Second, if the data are read in as

separate arrays, then those arrays may be of different sizes. That is,
the Level 1 dimensions may have different structures over different

ranges of Level 2 dimensions. For example, the first five days of the

longitude-latitude wind fields might consist of five 2 × 72 × 37 arrays,
while the next ten days might be a series of ten 2 × 144 × 46 arrays.

Level 3 dimensions specify how the data in the dataset have been aver-

aged, integrated, or summed over which subsets of Level 0, Level 1,
and Level 2 dimensions. These are "virtual dimensions", in that they

do not correspond to any indices in a data array, but otherwise their

structure is very similar to that of the other, "real" dimensions. A
set of monthly averaged data, for example, would have a Level 3 di-

mension corresponding to time and detailing the days of the month

over which the average was taken, as well as what averaging method

was used. (Note that instantaneous or point data, consisting of ob-
servations or calculations that are considered to occur at fixed points

in coordinate space, have no averages and hence have no Level 3 di-

mensions.)

Dimensions may have multiple, parallel definitions. For example, pres-
sure levels at which data are recorded can also be specified as altitudes

above sea level. Which description is best? This is a decision best left

to the dataset originator. The originator must define one quantity as the

authoritative descriptor for a given dimension; any other descriptors for
that same dimension will be duplicate, additional descriptors for the di-
mension. A user of the data will use the authoritative descriptor to obtain

the definitive word on the grid point values of that dimension; users may

use the additional information if they desire it, but that information is not

required for understanding the quantity that dimension represents.

2.3.2 Indices

The df format uses several kinds of indices to provide flexibility in how a

dataset can be written. Indices are used in three basic ways: to identify

or order the type of each record, to order the information about the data

dimensions, and to specify ranges over which various conditions apply.

2.3. ELUCIDATION 23

Examples of the use these various indices may be found in Chapter 3.

Record indices

Each record begins with an integer code indicating what kind of record it

is. This recoM ID can also be ,se<l as an o,'dering in(h_x. Currently, tile

order of records in a dataset is fixed, and this ordering function is somewhat
redundant.

Some record types and record groups call be repeated (i.e.,

DESCRIPI, DESCRIP3, COMMENT, BADVAL, Procgroup, Auxgroup,
and Packgroup); these records all inclnde a RECSORT fiehl which is used

to associate related records within a group and to order different records

(or record groups) which are of the same type. Except for BADVAL and

DIMSPECI records (whose multiple records are not allowed to overlap),
this ordering may be very important: where conflicts arise in regions where

two records' domains overlap, the record with the higher-numbered index

takes precedence.

For example, the COMMENT records are ordered by their indices such

that, even if they are written to the dataset in a random order, a reader

program can know how to put them back in order, so that the sentences,

tabular values, or other such information in the comments makes sense.

The RECSORT fields in the Procgroup and Packgroup records specify

the order in which subsets of the data were processed or packed. (These
subsets are specified by other fields, START and END, which are de-

scribed in Section 2.3.2). The Auxgroup RECSORT fields are mainly a

convenience to distinguish one record from another within an Auxgroup.

The information contained in the Procgroup and Auxgroup records is usu-

ally not needed to read the data and could be ignored; this information is

often, however, needed to use the data wisely. The Packgroup records, on

the other hand, contain information which is critical to reading the data,
and their ordering must be specified with care.

The DESCRIP1 and DESCRIP3 records use the RECSORT field to dis-

tinguish between descriptors of different subsets the same dimension index.

The order of the DESCRIP1 records is not important since there can be no

overlap in specification. The order of the DESCRIP3 records is important

and indicates the order in which the data were averaged.

Dimension Indices

Returning to the identification of the various dimensional levels with sets

of indices of a data array, one realizes that the description given in
Section 2.3.1 implies a certain ordering to that array: Level 0 dimen-

24 CIIAPTER 2. SPECIFICATION OF TtlE FORMAT

sions/indices would be tile fastest-varying, followed by the Level 1 dimen-

sions/indices, and finally the Level 2 dimensions/indices. To impose such

an ordering oil how the data sets are written would be excessively restric-

tive, so a logical separation is made between the order of the array indices

(which may I)e in any arbitrary order desired by the dataset creator) and
tlw order in which dimensions are specifit'd, which is fix_'(I by ttw format.

A pointer or index must therefore be attached to each dimensional specifi-

cation, indicating to which "array index" that dimension corresponds. The

Set of all these pointers, then, would constitute a one-to-one mapping be-

tween array indices and data dimensions. (A special case of such a pointer
is the Level 0 dimension of scalar data; as mentioned above, a dimension of

rank 1 is superfluous, and, since there is therefore unlikely to be an array

dimension corresponding to the single Level 0 grid point, the pointer may
be taken as-l--it doesn't really point to an array index.).

For convenience, we will refer to the data array as written in the dataset

as the "actual array," while the data array whose imlices are ordered in the
Level 0 Level 1 Level 2 sequence will be called the "virtual array." In this

virtual array, the first I indices correspond to the Level 0 dimensions (where
I is the order of the Level 0 dimensions-- the number of Level 0 dimensions),

the next J indices correspond to the Level 1 dimensions (J being the order

of the Level 1 dimensions), and the final N indices correspond to the Level 2

dimensions (where K is the order of the Level 2 dimensions).

The pointers which map the virtual-array indices to the actual-array

indices are specified in the INDEX fiehls of the DIMSPEC0, DIMSPECI,
and DIMSPEC2 records. Each INDEX field is a one-dimensional array

of pointers; the ith element of an INDEX field gives the position in the

actual array of the index of a given Level's ith dimension. For examples,
see Section 3.2.

The DESCRIP1, DESCRIP2, DESCRIP3, DESCRIP, DESCVAL, and
DESCSUP records contain another index, NDEX, which identifies which

dimension at a given level they are describing. This NDEX value re-

flects the ordering of the indices of the virtual array, however, and not

the actual array's indices. That is, the field DESCRIP1.DEXSORT.NDEX
is to be used as an index into the DIMSPECI.INDEX pointer array:

DIMSPEC I.INDEX[DESCRIP 1.DEXSORT.NDEX] gives that index of the

actual array which corresponds to the dimension being described by the

DESCRIPI record. (This sounds more complicated than it actually is; see

the examples in Section 3.2.)

2.3. ELUCIDATION 25

START and END Fields

START and END are index fields contained in the DESCRIP1, DESCRIP3,

BADVAL, PROCSPEC, PROCDUP, AUXSPEC, and PAKSPEC record

types. These records can apply over specific, limited ranges of the data

dimensions. For example, a BADVAL record can define a bad-data flag
value which applies only to a specific subset of the data: any values found

in that subset which match the bad-data flag are considered to be bad or
missing data, while the same values found outside the subset are treated as

normal, legitimate data values.

The START and END indices are the mechanism for defining such sub-

sets. Both START and END are one-dimensional arrays (vectors) of indices.
These are indices into the virtual array defined in Section 2.3.2. If we de-

note the order of the Level 0, Level 1, and Level 2 dimensions by I, J, and

K, respectively, then a PROCSPEC.START array is I + J + If elements

long. If a record type is to apply over a specific range of values in each

dimension, the START indices specify the beginnings of those ranges, and

the END indices specify their ends. (Note that an index of-1 represents

tile last element of a dimension.)
Some START and END records do not cover all the indices of the virtual

array. Every BADVAL record, for example, must specify bad-data flags for

all grid points in all Level 0 dimensions; its START and END fields refer

only to ranges in the Level 1 and Level 2 dimensions and are hence J + K
elements long.

Likewise, DESCRIP1, which must specify which data records are de-

scribed by the Level 1 dimension being defined, can cover ranges only of

the Level 2 dimensions. Its START and END fields, then, are only K

elements long.

For examples, see Section 3.3.

Auxiliary information array indices

See Section 2.3.3 for a description of how the auxiliary information arrays
are arranged.

2.3.3 Auxiliary Information

In discussing auxiliary information, it may be useful to keep in mind a

particular example of such information: the uncertainty in a measurement.
Uncertainty generally does not stand alone on its own merits as a variable

in its own right, so it does not belong in the data. On the other hand, it is

too important to be left to local processing codes (not to mention that fact

26 CIIAPTER 2. SPECIFICATION OF TIlE FORMAT

that, if it varies enough over the data, it conht use up a considerable amount

of disk space if put into the processing codes, since for every PROCVAL

there must be a PROCFORM.) Hence, the existence of a separate group of

metadata: auxiliary information.
Note that the auxiliary information can refer not only to the data, but

to tlw dimensions as w_,ll. For exanq)lc, l.clnl_'ralures (data) may haw'

uncertainties attached, but so can the altitudes (dimension) at which those

temperatures were taken. Therefore, the auxiliary information refers to one

set of dimensions (including Level 0 dimensions if it refers to the data), and

it will at the same time apply to another set of dimensions that is, it may

vary over a range of those other dimensions.
If the uncertainties in the temperatures in our example vary from day

to day, then we must specify not only the dimensions to which the auxiliary
information refers, but also the dimension (time) over which it varies, and

we must include in the auxiliary values a set of uncertainties applicable for

each day. The auxiliary information, then, is said to apply over the time
dimension.

These two concepts (reference and application) can be summarized by

stating that the refi_rence dimensions tell what the auxiliary information is

about; the application dimensions tell how it varies over the data field.

The quantity code associated with auxiliary information may be a quan-

tity such as "error" or "uncertainty," in which case the quantity or quan-
tities of the data or dimensions to which it refers are the actual physical

quantities involved. In addition, auxiliary information may carry its own
units. If it is marked as having no units, either there are no units for the

auxiliary information or the vnits are to be taken from the variables being
referred to.

The auxiliary information itself is contained in an array, and some corre-

spondence must then be established between the elements of that array and
the data and its dimensions. To do this, two fields are defined: APPLEV

and APPNDEX, lists of dimensional levels and dimensional indices, re-

spectively, whose elements correspond to the associated dimensions of the

auxiliary array.
Thus, the number of application dimensions determines the number of

dimensions of the auxiliary information array. The size of the auxiliary

array (i.e., the number of grid points in each of its dimensions) is deter-

mined by the START-END indices associated with the Auxgroup. Thus,
to determine the size of the i'th dimension of the auxiliary array, one would

look at the i'th element of the application dimension list, obtain the level

and index of the data dimension to which the array dimension corresponds,

and use that level and index to look into the START and END lists for the

beginning and ending data dimension grid points over which the Auxgroup

"2.3. Igl, lr('ll):Vl'l()N '27

applies. The number or grid poinls is then tl., same as the size of the

auxiliary array along thai, array dimension.

A similar inechanislu exists I.o hldical.e which dai.a dhnensions the

Aulgl'OU I) i'e{'(,rs I.o. Agahi, two IMds are defhi('d: lll':l:l, lqV and

IIEI:NI)I']X, which Colil.ahi the h,w,l._ and indices or ill(, dala. diiileli.,-;iOli.S

rel'_'l'red io by Ihl, auxiliary inltiriiialhin. 'rhl, _)rdl,r or ilie eh'nil'nls oF

these two lists is unhnl)orl.anl,. The e×l.ent, of a dhuensioli over which the

Ail×grOlll) refers is SlWcilh,d l)y the Ailxgrollli'S STAII;r illid ENI) fields.

s% i'o['erellCe dhllen.,iiOli lliay ill,i) alil)oar ill I.he alll)lh'alion dhnonsioll._' Iisi.;

I.his hidical.es l.hal, the ;UlXilial'y ill['()l'llial.ion liOf only i'('['_'1"._1.o l.li;ll dhnl,n-

sion, I>ul iq>lilh,s 1o il. as well (i:,., varies over ii.s grhl i)ohlls ;is well). If a

I'ePl,roliCp dhiiensioli is ilol repeated hi the alll)licalion diiilen._iOli.S' list, then

all of i.he auxiliary ili['orillation rl,l'er.,-; I.o eacii grid pohit hi ihal. refereliC('

dinlension (a,"; bounded liy its S'i'AIIT and END l)ohlts).

2.3.4 Audit Trail

The audit trail concepl, is a very illipol'l.alil OliO hi Irying 1o ix;we the history

oPa (lalasel. alll[(';111hi, especially Ilsl'Pll[wht'll o11o is raced wil.h ;111iiiiklloWll

(lalasel.. I1. allows a ilser I.o discow,r t.he Paniiiy hislory or lilt, dala, [indhig

()ill what dal.a,st'l..s were IlSed in el'i'ill.hig i.lie pr(,Selll, d;il.a, ['roili which sites

these anceMor dai.a._el.s orighl;ll.ed, alld which lasks al t.hose sites produced

l.helii.

.igll(']l a r;unily tree is i)assed down I¥oni ([al,a._;el, i,o dal, asel,, general, ion

1,o _OllOral, iOll, by (,XIl';l('lill_ il frolll coil|pOliO,lit, (I;ll,;l_(,l_,,ioinili_;il l,o_l,|,hol"

SOlllehow, allt[li[li_[ill_; the result [111o ;t lieW daia,_el., Ih'catlse data [¥OIII

any dal, a,_iel, may lie ilSed I.o create _Olil(' ol.]ier dal.as('l. (e.g>., t.o hlitialize a

niodel), such all audil, trail Iliil_t be in('hiih'd in t'ilcry dal.asel, if ii. is 1o be

IlSl'flll. (_.:_trt- Illust |)_' taken, therefore, "wh('ll dpSigllhlg slictl ;l data strut-

tim, to keep it conlpact, illchlding only i he informalion which is al)solutely
necessary, hlchlding all reh'vanl, information (fih' nanles, prograln names

and w,rsion nulnbers, rlin-tinle parameters) wouhl cost more in increased

file sizes than wouhl lu' gained in usefuhless. Therefore, the df audit trail

is Illath, lip o[" nod(,s, o11o per allCestor datasel., which are ('Olll|)osod of four

long ilil.0gers: a site II), a {ask II), a date ,'4i,_llllp, alld a. poinl,er to a.llol.her

aiidil, node. This hiforlii;ll.ioli is lhnil.ed, but ii does allow a user t.o ('Oil-

tact the sites for further illforlnation beyond what is giVl'li in i.he dalaset's

CO M M E N' r, l N I:OS P E("., <.uid I)I{OCS P EC records.

The AUI)rr record type keeps track of this audit trail wlih iis Tll.lql']

field, which colltains a group of uodes coluiecl.ed in ;). tree slrllcture. The

site identifier code in a node is unique Io the site where the df format

data.set is generated. (These codes are discussed in Section A.I.2). The

28 CtlA PTER 2. SPECIFICATION OF TIlE FORMAT

task identifier is a site-dependent code indicating tile task which generated

the data. (These codes are explained in Section A.2.1). The date stamp is

the the day number from 1 January 1900 (i.e., the number of days elapsed

since 31 December 1899). The pointer points to the next node in the tree

(with the the current data set's pointer being NULL. The tree is set up
as a one-dimensional array of nodes. Each pointer contains a displacement

from itself in the array: for example, a pointer to the next node would have

a value of 1, a pointer the the third node down the line would have a value

of 3, and so on.

See Section 3.4 for examples.

2.3.5 Processing Codes

Processing codes are intended as notes which are appended to subsets of

the data. Suppose, for example, that an array of data has a gap of bad or

missing data, and that the most frequent use of the data requires that the

gap be filled by some form of interpolation. For efficiency, it is desirable
to write the interpolated data into the file with the real data, so that the

interpolation will not have to be done again and again, each time tile data.set
is read. On the other hand, it would be very dangerous to simply mix the

interpolated and real data in the dataset indiscriminately.

Processing codes are meant to handle such situations. One can use

Proegroup record groups to mark any part of the data to which the attention
of the cautious user needs to be drawn.

2.4 Record Type Format Specifications

This section contains the specifications for each record type. Each field

will be described and the format specified by one of the following codes:

B = byte
C = character

F = single precision floating-point

I = long integer

N = audit node (I, I, I, I)

S = strir_g
? = type as specified by a field in an earlier record

* = array

2.4. RECORD TYPE FORMAT SPE(!IFICATIONS 29

2.4.1 TEST

This must be the first record in any dataset. This contains all of the
information needed to determine how to read the dataset. The information

is stored in 8-bit bytes so that it is machine-independent. A reader program

on ally coml)ut_'r system shou](I I)e abh" to det(,rnline the format of tile

dataset, whether or not it can read that dataset, and how to read it.

The dataset is defined to begin at the TEST record, no matter what

information appears t)efore it. It is permissible to include miscellaneous

information before this record in the dataset (such as a Standard Format

Data Unit label); such prepended information will not I)e considered to be

a part of the dataset for the purposes of this standard. If the dataset i8

written with some sort of header bytes before the TEST record (e.g., the

byte array header in the XDR format) then the dataset is defined to start

with that header. The presence of these headers can be deduced from the

contents of the TEST record, Thus, when trying to identify a dataset of

unknown type, a program should scan until it. encounters the magic number,

read the next 20 bytes, and determine whether header 1)ytes are present

The record consists of a total of 24 bytes,

name bytes

MAGIC 1-4

MACHID 5

description

contains the magic number: 47 t"3 46 e3 in

hexadecimal notation. The bytes must be

specified in exactly this order. The dataset

can be searched byte for byte until this se-
quence is found. The odds of this sequence

occurring at random is 1 in 4294967296.
Therefore, there is a slight chance of a false

identification of a dataset being in the stan-

dard format. There is also a very slight

chance that prepended information in a stan-
dard dataset will be identified as the start of

the dataset.

contains an identification number of the ma-

chine that generated the dataset. This field is

for tracking the history of the dataset and is

not needed for interpreting the dataset. The
codes are as follows:

T

=

Z

3O

NUMOBJECTS

SPECA

('11,4 PTI':Ii SI E(!!I,'I(!ATION 0I,' TIlE I,Y)IU_IAT

0 =

2 =

3 =
4 =

5 =

6 =

7 =

8 =

9 =

tO =

II =

unknown (free use of this code is

discouraged)

I)EC VAX running VMS

Silicon Graphics Iris workstation

(;ray Y-MP run.ing UNI('OS

IBM mainframe i'.t_,d.g MVS

M S-I)OS l)ersonal cornl)utcr

Apph' Macintosh
_llll workstation

l)l,;(l Ultri× workst_ition

lh_wlel,t- Packard

Unix workstation

IBM Unix workstation

('onvex

is the nm.ber of data objects co.tained in

the <lat_Ls(+'l,.If z<,ro, l,h(m thero is assnmed to

I)e on<_ <lata ol@+ct

c<mtains hlf<)rmatiori abotil, the l>yt<_ and

word forlllats oi" tlm data. Bits are Sl)ecified

as follows (counting front the lea_+t signilicant

bit):

CHARSET (|)its 0-1) indicates which
character set is used for text a.s follows:

0 = Xl)R (subsequent bits in this

byte are ignored)
I = ASCII
2 = F,BCD[C

BSWAP (bit 2) indicates what kind of
byte-swapping is used as follows:

0 = most significant byte is stored
in the lower of the two ma-

chine word addresses

t = most significant byte is stored

in the higher of the two ma-
chine word addresses

WSWAP (bit 3) indicates what kind of

word-swapping is used as follows:

i
ID

2.,t. RE(.'OIII) TUI'E FORMAT SI'I:('II"ICATiONS

RESERVED1 8

RECHDR 9

RESERVED2 10

SP ECB 11

0 = most signilicant word isstored
in the lower of the two ma-

chine word addresses

1 = most significant word is stored

in the high4.,r of tile two ma-
chi,i_' word a(ldr_'sst's

RESERVE (bits '1-7) is reserved for future

expansion

is reserw,d for future exl)allsion

indicates what kind of operating syst(,rn and

language record]mad,_rs ar_ I)resent. 'l'h(_ in-

tent here is to specify which algorithm to use
in tracing through any headers present, not

to specify which machine wrote the datxset.

'this fie.ld is cornplet(.'ly in(hq>end,_nt of the

MACIlII) field. A machin_' may I)_ al)l('

to read and writ(' Imadcrs from foreign ma-

chine's. The (:o(l_'s ar_ Sl)ecifi_d as follows:

0 -: XI)R

1 = none (pure stream file)

2 = VMS Fortran segmented variable

length
3 = t77 Fortran

4 = Cray COS
5 = IRM VP, S

is reserved for future expansion

contains information about array ordering
and index references. Bits are specified a.s fol-

lows (counting from the least significant bit):

ARRORD (bit 0) indicates the ordering

of elements in multidimensional arrays:

0 = fastest-varying index is last

(most languages)
1 = slowest-varying index is last

(Fortran, IDL)

IDXSTART (bit 1) indicates the starting
value of indices:

0 = start from 0
1 = start from 1

RESERVE ('bits 2-7) is reserved for future
expansion

32

SLEN

LLEN

FLEN

DLEN

FPFORM

RESERVED3

RESERVED4

RESERVED5

RESERVED6

RESERVED7

RESERVED8

RESERVED9

RESERVED10

CHAPTER 2. SPECIFICATION OF THE FORMAT

12

13

14

15

16

17

18

19

20

21

22

23

24

indicates the length in bits of a short integer

0 = XDR

indicates the length in bits of a long integer

0 = XDR

indicates the h'ngth in bi(s of a siugle preci-

sion floating-point number

0 = XDR

indicates the length in bits of a double preci-

sion floating-point number

0 = XDR

contains information about the form of

floating-point numbers. Bits art specified as

follows (counting from the least significant

bit):

SP (bits 0-3) indicates the format code of
a single precision floating-point number:

0 = XDR

1 = IEEE

2 = VAX
3 = IBM mainframe

4 = Cray

DP (bits 4-7) indicates the format code of

a double precision floating-point number:
0 = XDR

1 = IEEE

2 = VAX D

3 = IBM mainframe

4 = Cray
5 = VAX G

is reserved for future expansion

is reserved for future expansion

is reserved for future expansmn

is reserved for future expansion

is reserved for future expansion

is reserved for future expansmn

_s reserved for future expansmn

is reserved for future expansmn

2.4. RECORD TYPE FORMAT SPECIFICATIONS 33

2.4.20BJDESC

This record type begins the specification of each data object. It contains
information on the enumeration of dimension orders and the number of

items for various descriptor record types.

name format description

RECTYPE I is the record type code = 1

VARTYPE I is the physical quantity code for the data object. This

code is explained in Section A.1.3

RESERV0 I is reserved for future expansion

NDIM0 I is the number of Level 0 dimensions (Level 0 order)

NDIM1 I is the number of Level 1 dimensions (Level 1 order)

NDIM2 I is the number of Level 2 dimensions (Level 2 order)

NDIM3 I is the number of Level 3 dimensions (Level 3 order)

RESERV1 I is reserved for filture expansion

ISOURCE I is the data source code. This code is explained in

Section A.2.2

RESERV2 I is reserved for future expansion

RESERV3 I is reserved for future expansion

NAUDIT I is the number of nodes in the AUDIT.TREE field.

(Must be greater than zero)

NINFO I is the number of bytes in the INFOSPEC.INFO field.

If zero, then there will be no INFOSPEC record

NCOMMS I is the number of COMMENT records which follows.

If zero, then there will be no COMMENT records

COMCOD I is the character string format code for the
COMMENT.NOTES field. This code is explained in

Section A.1.1

RESERV4 I is reserved for future expansion

NBADS [is the number of BADVAL records which follow. If

zero, then there are no BADVAL records, which im-

plies that there are no bad or missing data in this
data object

RESERV5 I is reserved for future expansion

NPROCS I is the number of Procgroups which follow. If zero,

then there are no Procgroup records, which implies

that there is no processing information

RESERV6 I is reserved for future expansion

3,1

NPACKS

RESERV7
NAUX

CMPNUM

RESERV8

RESERV9

RESERV10

CIIAI'TI';li 2. SPE('II:I('4TION 01'" Till'; I"OI_MAT

1 is the number of l)ackgroups whicl, follow. If zero,

then there are no Packgroul) records, which implies

that the data are not packed

I is reserved for future expansion

I is Ill(, munl)el' of AUXSI)E(! records which follow. If

zero, tl.'n th<','e will I_' no AUXSI'I';(' r<'cords.

l is the Illlllll)er of COMPI)AT records])resenl. ill the

dataset, as well as the mtml)er of elements in the
(!OMI)I,I.;N.I,EN(FI'IIS record field which follows.

Normally, there will Iw ouly one (!OMP1)NI' r_,cord

(or none at all), I)ut for especially long lilt,s, or given

constraints of certain COml)tlt+er languagt's, it, may

be advisa+ble to split the compressed data into sev-
<'ral records of arbitrary h'tlglhs, recorded here. If

CMPNUbl is zero, then l.here ar<' no (!ompgrotq+ or
COM P I)AT records

I is res<,rw'd for fttture expausiou

I is r,'s,,rw'd for fllltlr(" expansion

[is reserved R)r future expansion

2.1. IIECOIII) TYPE FOI_MAT SPI'X'II"I(WI'IONS :15

2.4.3 AUDIT

This record type specifies an audit trace of]low the data was processed.

This "family tree" of the data is implemented as a vector of nodes, each of

which represents a step in the history of the data. Each ttode refi,rs to a

datascl ilSe(I ill the creation of the current data ol)j,,ct.

name format

RECTYPE I

TREE N*

description

is the record typ(, code = 10

co,ltains the trrc sl.,'tlcture specifying the audit trail of

the data object. Each nod(' ill th(, tree contains the
four parts of the audit structure: the site identifier

(Site IDs are centrally registered and are discussed in

A. 1.2,) the ta_sk i(h'ntifier (Ta.sk codes are site-defined

and are discussed in A.2.l,) the date of generation,
and a relative point.or to the next lower node in the

tree. The last (root) node must (:ontaitl the identifiers

and time stamp for the ('urn'td data object and a

NU[,L pointer. See Sect.iotl 2.;|.d for details on this
structure

2.4.4 INFOSPEC

This record type allows for the specification of general information that is

completely user-defined. The df standard provides no general mechanism

for interpretation of these bytes. The number of bytes in the INFO field
are specified by OBJDESC.NINFO. If OBJDESC.NINFO = 0, then this

record will not be present.

name format description

RECTYPE I is the record type code = 11

INFO B* contains the information as an array of bytes. The

user is encouraged to document the meaning of these
bytes in the COMMENT field or in a standard site-

dependent file. See the discussion in Section A.2.6

36 CHAPTER 2. SPECIFICATION OF THE FORMAT

2.4.5 COMMENT

This record type allows for the specification of general information that is

completely user-defined. These records are in human-readable format. The
number of records is specified in OBJDESC.NCOMMS. The records are

considered to be ill the order specified in RECSORT, regardless of their

actual physical order in the dataset.

name

RECTYPE

RECSORT

NOTES

format description

I is the record type code = 12

I is the index for sorting the records. Lower in-
dexed records will be processed before higher indexed

records. See the discussion in Section 2.3.2

S is an 80-character string containing human-readable

text. The string is formatted as in the
OBJDESC.COMCOD field

2.4. RECORD TYPE FORMAT SPECIFICATIONS 37

2.4.6 DIMSPEC0

This record type specifies the Level 0 dimensions (components) of the data

object. The field arrays are OBJDESC.NDIM0 elements in length.

name format

RECTYPE I

RESERVE0 I

RESERVE1 I

INDEX I*

GPTNUM I*

description

is the record type code = 20

is reserved for future expansion

is reserved for future expansion

is the relative index pointer for the Level 0 dimen-

sions. These indices are pointers that map the or-

dering of the DESCRIP0 fields into the actual data

array index order. Counting begins with 0 or 1 as

specified in TEST.SPECB.IDXSTART. A value of-1

indicates a scalar value (i.e., there is no separate in-

dex value into the data array). See the discussion in
Section 2.3.2

is the number of grid points defined along each di-

mension (the rank of the dimension). These values
must be greater than zero

38 CIIAPT'I';R 2. SPECIFICATION OF TIlE FORMAT

2.4.7 DIMSPEC1

This record type specifies the Level 1 dimensions of the data object. There
can be several DESCRIP1 records for each Level l dimension. The field

arrays are OILJDESC.NDIM1 elements in length.

name format

RECTYPE l

RESERVE0 I

RESERVE1 I

INDEX I*

DESNUM l*

description

is the record type code = 21

is reserved for filture expansion

is reserw:d h)r future expansion

is the relative index pointer h)r the Level I dimen-

sions. The values in this field are pointers that map

the ordering of the DESCRIPI records into the ac-

tual data array index order. Counting begins with

0 or l as specified in TEST.SPECB.IDXSTART. Sec
the discussion in Section 2.3.2

is the number of D ESCI_IPI records used to describe

this dimension. The user can specify a different num-
ber of Level 1 dimension grid points along various

Level 2 dimensions; these different Level ! dimen-

sion definitions require different DESCRIP1 records,

whose number is given here. Note, however, these dif-

fering Level 1 dimensions must be defined over non-

overlapping ranges of Level 2 dimensions. DESNUM

values must be greater than zero

i

2.,/. I_I,;COIID TYI'E I,'OItMAT S'I)I,;('II,'I('A'rlONS 39

2.4.8 DIMSPEC2

ilaill(_, fOrlllat

RECTYPE I

RESERVE0 l

RESERVE1 I

INDEX I*

This record type specifics the I,evel 2 dimensions of the data object. There

must be one I)ESCRIP2 recor(l for each [,ew_l 2 dimension. The fiehl arrays

are OB.I I)ES(I.N I)IM2 (*.l(_nl(._ll|lSill I_ngth.

d_,scril)tion

is the record type cod[.' = 22

is reserw_dfor flltlll'[_ expansion

is res['rw'd for _lltlll'_' expansion

is the r[_latiw_ ind[_x I)oilJU." for th,_ L,w[_l 2 (lim('_ll-

sions. The vah._s in this fi,,hl ar,_ pointers ttiat map

the ordering of th[_ I)F, SCIUI)2 records into th[_ ac-

tual data array index order. Comtting b[_gins with

0 or las Sl)ecilied in TEST.SIU'](II1.11)XSTAI[I'. See
tlw discussion in S(_cl,ion 2.3.2

GPTNUM I* is the numt)_r of grid points (h'[in_'d along each (li-

m['nsion (the' rank of I,h_" [lim_'nsion). Tl,'sc" valu['s

must t)c ['ither gr[,al,_r than zero or equal to-I (the

latter to indicate unt)otm(ledness)

2.4.9 DIMSPEC3

This record type specifies the I,evel 3 (averaging) dimensions of the data
object. Several DES(]R[P3 records can exist for every Level 3 dimension.

The field array is OIJJDESC.NDIM3 elements in length.

name

RECTYPE

RESERVE0

RESERVE1

DESNUM

format description

I is the record type code = 23

I is reserved for future expansion

I is reserved for future expansion

I* is the number of DESCRIP3 records used to describe

this dimension. These values nmst be greater than
zero

4O CHAPTER 2. SPECIFICATION OF TIlE FORMAT

2.4.10 DESCRIP0

This record type contains the descriptions of the Level 0 dimensions.

The length of each array is the multiplicative sum of the elements in
DIMSPEC0.GPTNUM.

name format

RECTYPE I

RESERVE0 I

RESERVE1 I

DATFMT I*

VARTYPE I*

UNITS I*

description

is the record type code = 30

is reserved for future expansion

is reserved for future expansion

is the data format code. If the data are packed, this

will be the format of the data after they have been

unpacked. This code is explained in Section A.I.1

is the quantity code for each data component (Level 0

dimension). This code is explained in Section A.1.3

is the units code for each data component (Level 0

dimension). This code is explained in Section A.l.4

2.,I. RECORD TYPE FORMAT SPECIFICATIONS 41

2.4.11 DESCRIP1

For each Level 1 dimension (i =I,...,OBJDESC.NDIM1) there must be

DIMSPEC1.DESNUM[i] records in this record type. The descriptor records

may be in any order, but it is recommended that they be in order of

1 through OBJDESC..NDIM1. This record type is considered the au-

thoritative source of information for this dimension. A parallel description

can be placed in the DESCRIP record type. There must be a DESCVAL

record for each DESCRIP1 record, to specify the grid points along that

dimension. An optional DESCSUP record may be present if additional in-

formation is required. An important note: There should be no overlap in

the ranges of the Level 2 dimensions, since there cannot be two differing
number of grid points along any particular Level 2 dimension. The START

and END fields define the ranges of the Level 2 dimensions to which these

particular Level 1 dimensions apply. For example, the user may have ob-

servations at particular spatial locations that have been made at varying
height levels. The spatial locations might make up the Level 2 dimension

and the height levels would serve as a the Level 1 dimension. The START

and END fields will contain the particular spatial locations that a particular

set of height levels apply to.

name

RECTYPE

DEXSORT

START

END

format

I*

I*

description

I is the record type code = 31

INDEX (bits 0-15) specifies which Level 1 dimen-

sion is being described. Counting begins at 0 or
1 as specified in the TEST.SPECB.IDXSTART

field. Note that this index does not refer to an

index position of an actual data array but is in-
stead a pointer into the DIMSPECI.INDEX field.
See the discussion in Section 2.3.2

RECSORT (bits 16-31) is the index for sorting
DESCRIP1 records with the same NDEX field.
See the discussion in Section 2.3.2

is an OBJDESC.NDIM2-element array of Level 2 di-

mension grid points over which this record begins to

apply. Counting begins with 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-
tion 2.3.2

is an OBJDESC.NDIM2-element array of Level 2 di-

mension grid points over which this record stops ap-
plying. A value of-1 indicates the last grid point of

42

GPTNUM
DUPNUM
DESSUP

DESFMT

DESTYPE

UNITS

STORG

RESERVE()

RESERVE1

('ilA I'TI¢i_ 2, SI>E('II"I('ATI()N 01" Till'; F()I¢MAT

that dimension. ('_ounl.i,lg iwgins with 0 or 1 as SlWCi-
fi(,d in TI';ST.SI)I",CI).II)XSTAI_T. Scc the discussion

in Section 2.3.2

i is the m.nl)(_r of grid points along this dimension

I is lhc nu*,d)_'r of I)ES('rl{ll) records for this dimension

I is the n.ml),',' of Iloati,lg-i)oinl val.es in IIw SVAI,S

fichl of tin' following I)ES(',SUI' record, If zero, then
there is no I)ESCSUP record fi)r l.his dimension

I is the des('ril)l.or h)rtnal, code. This co(h, is ,'xl)lain('d
i,,Section A.I.I

I is the (Itlalllit.y code for tl.' Idlysical (IHantity tit.at

the dimension represc,lts. This code is exF,hdm,d i,I
Section A. 1.3.

I is the units code for the physical quanl.ity I.hal. the

(li,,,_,nsion r_,pr('s_'nts. This ('ode is ,'Xldain('d i,,Se('-
tion A.I.'1.

I specilies how the val,ws of the des(','il_to" are sl.ored
in th(' DES('VAI, r('cord which folh)ws. The I_ossil)h'

wdm's are:

0 = an explicit array of (IPTNUM values
I = an implicit, Sl)ccillcation consisting of a

(low-value, interval) pair
2 = an implicit spccific;_tiou consisting of a

(Iow-wduc, high-wduc) I)air

l is reserw'd for future (_xl)ansion

I is reserved for future expansion

2.,1. III'X'OIH) 'I'YIH", I"()IlMAT SI'I'X'II"I('ATI()NS '13

2.4.12 DESCRIP2

l:oreach 1,evel 2 dimension (i =1,.. ,,OIUI)ESC.NI)IM2) there must be
a single record ill this record type. The descriptor records may be ill

any order, but il.is recommended l.hal,they be in the order I through
()ILlI)I:,S('..NI)IM2. This recordisconsidered the authorilal.iw,SOlll'Ceor

information Ru' this dimension. A parallel description can be supl)lied in
the I)ES(',RIP record type. There must be a I)I:,S(',VAL record for each

I)I'_S('.IIIP2 record which specilh,s the grid poinls along that dimension.

Ai| ol)tional I)ES('.SUI) record lilay I)e i)r(,sellt ir a(hlitional informatioll in
required.

DUPNUM

DESSUP

DESFMT

DESTYPE

UNITS

STORG

rornlat d(,scription

I in the record type cod(' : 32

I speci[it,s whh'h I,ew'l 2 (lim('nsion is being (h,scril)ed.

(',omlting begins at 0 or 1 as specilied in the
TI,:ST.SIH,:('.I}.il)XS'I'AI_:r fiehl. Note l,ll_tt this iu-

(lox (Io('s IlOt rorcr to an [ll(ll'x I)ositloll or an iIc-

tllal (Iata array hilt is illSl,c;td ;t I)Oilll.(,r illi.o the

I)IMSI'E(',_2.1NI)I,;X llehl. See the (liscllssion ill S(,('-

tion 2.3.2

I is the nmnl)er of I)I':SCRll) records for this(linlension

1 iS the uullll)er of Iloatillg-pohlt values in the SVAI,S

field of the following I)ES(_SUP record. If zero, theu
there is no I)I,',SCS(I!) r('cord for this dimension

! is the descril)tor forlnat (,ode. This code is exl)laine(I
in Section A. 1. l

I in the quantity code for the physical quantity that

the dimension represents. This code is explained in
Section A. 1.3

I is the units code for the physical quantity that the

dimension represents. This code is explained in Sec-
tion A. 1.4

I specifies how the values of tim descriptor are stored

in the DESCVAL record which follows. The possible
values are:

0 = an explicit array of
DIMSPEC2.GPTNUM values

l = an implicit specification consisting of a
(low-value, interval) pair

2 = an implicit specification consisting of a
(low-value, high-value) pair

itallll"

RECTYPE

NDEX

44

RESERVE0

RESERVE1

CHAPTER 2. SPECIFICATION OF THE FORMAT

I is reserved for future expansion

I is reserved for future expansion

2.,t. RECORD TYPE FORMAT SPECIFICATIONS 45

2.4.13 DESCRIP3

For each Level 3 dimension (i =1,...,OBJDESC.NDIM3) there must

be DIMSPEC3.DESNUM[i] records. The descriptor records may be

in any order, but it is recommended that they be in the order 1
through OBJDESC.NDIM3. This record is considered tile authoritative

source of information for this ¢limension. A parallel definition can be sup-
plied in the DESCRIP records. There must be a DESCVAL record for

each DESCRIP3 record, to specify the grid points along that dimension.

An optional DESCSUP record may be present if additional information is

required. The START and END fields indicate which Level 0, Level 1, and

Level 2 dimensions this particular Level 3 dimension applies to. For exam-

ple, the user may have observations that have been integrated in height.

The data occur over spatial locations (Level 1) and time (Level 2). The

START and END fields will range fi'om (0, 0, 0) to (-1, -1, -1) to cover the

entire range of all Level 0-Level 2 dimensions. The number of grid points,
GPTNUM, will be the number of height levels that were integrated over.

Of course, different DESCRIP3 records referring to different Level 3 di-

mensions are allowed to have their ranges overlap, since different averaging
methods can be applied to the same subset of data.

name format description

RECTYPE I is the record type code = 33

DEXSORT INDEX (bits 0-15) is an index that determines

which Level 3 dimension is being described.
Counting begins at 0 or 1 as specified in the
TEST.SPECB.IDXSTART field. See the discus-

sion in Section 2.3.2

RECSORT (bits 16-31) is the index for sorting
DESCRIP3 records with the same NDEX field.

See the discussion in Section 2.3.2

START I* is an array of Level 0, Level 1, and Level 2 di-

mension grid points over which this record begins
to apply. The first OBJDESC.NDIM0 elements
correspond to the Level 0 dimensions. The mid-

dle OBJDESC.NDIM1 elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2

elements correspond to the Level 2 dimensions.

Counting begins with 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-

tion 2.3.2

46

END

GPTNUM

AVGCOD

DUPNUM

DESSUP

DESFMT

DESTYPE

UNITS

STORG

RESERVE0

RESERVE1

CilAP'I'EI_ 2. SPi'X;II"i(!ATION 01" Till," I,'Oi_MAT

1" is an array of Level 0, l,(:vel 1, aml I,,,vcl 2 dimension

grid points over which this record stops al)plyiug. The
first OBJI)ESC.NDIM0 elements correspond to tile

Lewd 0 (timensions. The middle OBJDESC.NDIM1

elements correspoml to the I,ev,_l I dimensions. The
last OILI I)ES('..N I)1 M2 _demenl.s correspoml l.o the
I,ewd 2 dimensions. A value of-I indicates the last

grid i)oint of that dimension. Counting begins with

0 or I as specified in TI']ST.SPI'X3LII)XS'I'A ffl'. See
the discussion in Se(q, ion 2.3.2

I is the muml)er of grid points along this dimension

I is the averaging method code

0 = instantaneous

1 = arithnwtic mean (discrct,' sum)

2 -- continuous integration
:1 = contimmus integration over weighting

I is th_ numl)er of i)ES(3{/1' record._ for this dinwnsion

I is the numl)er of floating-poitlt values in the SVAI,S

field of the following I)I",S(',SUI) record. If zero, then
there is no I)ESCSUP record for this dimension

I is the descriptor format (:ode. This code is exl)laiued
in Section A. I. 1

[is the quantity code for the physical quantity that

the dimension represents. This code is explained in
Section A. 1.3

I is the units code for the physical quantity that the

dimension represents. This code is explained in Sec-
tion A. 1.4

I specifies how the values of the descriptor are stored
in the DESCVAL record which follows. The possible

vahles are:

0 = an explicit array of GPTNUM values

1 = an implicit specification consisting of a

(low-value, interval) pair

2 = an implicit specification consisting of a

(low-value, high-value) pair

I is reserved for future expansion

I is reserved for future expansion

2.,t. REC'ORD TYPE FORMAT SPECIFICATIONS 47

2.4.14 DESCRIP

For each Level j (j = 1,2, 3) dimension there will be DIMSPECj.DUPNUM

DESCRIP records. The descriptor records may be in any order,

but it is recommended that they be in order of Level l: 1 through

I)[MSP]_:CI .DUPNUM, followed by L_,vcl 2: l through

DIMSPEC2.DUPNUM, followed by Level 3: l through

DIMSPEC3.DUPNUM. The information in this record type is considered

to be an alternative description of the dimension it parallels. There must be

a DESCVAL record for each DESCRIP record, to specify the grid points

along that dimension. An optional DESCSUP record may be present if
additional information is required.

name format

RECTYPE I

LEVEL I

DEXSORT I

DESSUP I

DESFMT I

DESTYPE I

UNITS I

STORG I

description

is the record type code = 34

is the dimensional level

NDEX (bits 0-15) is an index that corre-
sponds to ttle same fiehl in the associated

DIMSPECI, DIMSPEC2, or DIMSPEC3 record.

Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in
Section 2.3.2

RECSORT (bits 16-31) is an index that cor-
responds to the same field in the associated

DIMSPEC1, DIMSPEC2, or DIMSPEC3 record.

See the discussion in Section 2.3.2

is the number of floating-point values in the SVALS

field of the following DESCSUP record. If zero, then
there is no DESCSUP record for this dimension

is the descriptor format code. This code is explained
in Section A.I.1

is the quantity code for the physical quantity that

the dimension represents. This code is explained in
Section A. 1.3

is the units code for the physical quantity that the

dimension represents. This code is explained in Sec-
tion A. 1.1

specifies how the values of the descriptor are stored

in the DESCVAL record which follows. The possible
values are:

48 CHAPTER 2. SPECIFICATION OF THE FORMAT

DINDEX

RESERVE0

RESERVE1

0 = an explicit array of

DESCRIP 1.G PTNU M,

DIMSPEC2.GPTNUM, or
DESCRIP3.GPTNUM values

1 = an implicit specification consisting of a

(low-value, interval) pair
2 = an implicit specification consisting of a

(low-value, high-value) pair

I index serving as an identifier (within a given DEX-

SORT and LEVEL) of the Desegroup record group

begun by this record. Values must be greater than

zero. (A value of zero would imply that this is a

DESCRIP1, DESCRIP2, or DESCRIP3 record in-

stead of DESCRIP.)

I is reserved for future expansion

I is reserved for future expansion

2.,t. RECORD TYPE FORMAT SPECIFICATIONS 49

2.4.15 DESCVAL

For each DESCRIP or DESCRIPj (j = 1,2,3) record there will be one

DESCVAL record. This record type specifies the grid points along the

dimension specified.

name format

RECTYPE !

DLEVEL I

DEXSORT

AVALS

description

is the record type code = 35

specifies the dimension level and, if this DESCVAL

record is associated with a DESCRIP record (as op-

posed to DESCRIPI, DESCRIP2, or DESCRIP3),
then the DINDEX of that DESCRIP record as well.

The LEVEL bit field must be the same as in the cor-

responding DESCRIP or DESCRIP[LEVEL] record

LEVEL (bits 0-1) the dimensionallevel

DINDEX (bits 2-31) if zero, this record cor-

responds to a DESCRIP1, DESCRIP2, or

DESCRIP3 record; otherwise, it goes with the

DESCRIP record whose LEVEL, DEXSORT and
DINDEX fields match this record's

INDEX (bits 0-15) is the dimension index. Must be

the same as in the corresponding DESCRIP or

DESCRIP[LEVEL] record

RECSORT (bits 16-31) is the record index. Must

be the same as in the corresponding DESCRIP

or DESCRIP[LEVEL] record

9" is an array of values of the descriptor for each

grid point of the dimension specified. These val-
ues are formatted as in the DESCRIP.DESFMT and

DESCRIP.STORG or DESCRIP[LEVEL].DESFMT

and DESCRIP[LEVEL].STORG fields

5O CIIA PTER 2. _PECIFIC4770N OF "Fill,,. I,'ORMAT

i

s_

=_

2
11
==
|

=

z

2.4.16 DESCSUP

For each DESCRIP or DESCRIPj (j = 1,2,3) records there
will be one DESCSUP record if specified in DESCRIP.DESSUP or

DESCRIPj.DESSUP. This record type specifies the supplementary infor-

mation about l,he specified (limension.

name format description

RECTYPE l is the record type code = 36

DLEVEL I specifies the dimension level and, if this record is

associated with a DESCRIP record (as opposed to

DESCRIP1, DESCRIP2, or DESCRIP3), then the
DINDEX of that DESCRIP record as well. The

LEVEL bit field must be the same as in the corre-

sponding DESCRIP or DESCR1P[LEVEL] record

LEVEL (bits 0-1) the dimensional level

DINDEX (bits 2-31) if zero, this record cor-
responds to a DESCRIPI, DESCRIP2, or

DESCRIP3 record; otherwise, it goes with the

DESCRIP record whose LEVEL, DEXSORT and
DINDEX fields match this record's

I NDEX (bits 0-15) is the dimension index. Must be

the same as in the corresponding DESCRIP or

DESCRIP[LEVEL] record

RECSORT (bits 16-31) is the record index. Must

be the same as in the corresponding DESCRIP

or DESCRIP[LEVEL] record

I is the supplemental code which specifies the meaning
of the SVALS. This code is discussed in Section A.I.6

F* is an array of floating-point values containing sup-

plementary dimensional information. The length

of the array must be DESCRIP.DESSUP or

DESCRIP[LEVEL].DESSUP

DEXSORT

CODE

SVALS

z

Z

2.,1. RE('OI_D TI'PE I"ORMAT,ql)E('IFICATION% 51

2.4.17 BADVAL

This record type specifies how bad or missing data is flagged. There will

be OBJDESC.NBADS BADVAL records, and no BADVAL records will be

prosenl if OBJDESC..NBAI)S is zero. Each component of tile data will

haw" an associated bad-data flag (VALUI_). Multiple BADVAI, records call

exist covering overlapping ranges ill the Level 1 and Level 2 dimensions;

each record is indexed and will be processed in order of their RECSORT

fields. Note that it. is possible to specify different bad-data flags over dif-

fcre,tt ranges of the I,ew_l 1 and Level 2 dimensions. For example, a data

set of wind vectors might have the bad-data flags depend oil the pressure

level, but be independent of latitude and longitude. Note also that each
flag specification would consist of two values: one each for the East West

component and North South component of the wind vector.

name format description

RECTYPE I is the record type code = 40

RECSORT I is the index for sorting the records. Lower valued

records will be processed before higher valued records.
See the discussion in Section 2.3.2

RESERVE0 [is reserved for filture expansion

RESERVE1 [is reserved for future expansion

START I* is an array of Level 1 and Level 2 dimen-

sion grid points over which this record begins

to apply. Tile first OBJDESC.NDIMI elements
correspond to the Level l dimensions. The

last OBJDESC.NDIM2 elements correspond to the

Level 2 dimensions. Counting begins at 0 or 1 as
specified in TEST.SPECB.IDXSTART. See the dis-
cussion in Section 2.3.2

END I* is an array of Level 1 and Level 2 dimension grid

points over which this record stops applying. The
first OBJDESC.NDIMI elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2 el-

ements correspond to the Level 2 dimensions. A

value of -1 indicates the last grid point of that di-

mension. Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-
tion 2.3.2

is an array with the length equal to the multiplicative

sum of the number of grid points of all the Level 0

VALUE '_*

52 CHAPTER 2. SPECIFICATION OF TIIE FORMAT

dimensions (DIMSPEC0.GPTNUM). They are bad-
data flags for each data component and are formatted

according to DESCRIP0.DATFMT, i.e., they are in

the same numeric (or string) format as the component
data values

2.,t. RECORD TYPE FORMAT SPEC'IFICATIONS 53

2.4.18 PROCSPEC

This record type specifies processing codes for the data. The data object

will contain OBJDESC.NPROCS records of this record type, and no records

of this type if OBJDESC.NPROCS is zero. Tile records will be processed in

order of their RECSORT fields. Multiple PROCSPEC records can specify

an overlap of grid points in their START and END fields, since there can

be different processing codes for the same subset of data.

name format description

RECTYPE I is the record type code = 50

RECSORT I is the index for sorting the records. Lower valued

records will be processed before higher valued records.
See the discussion in Section 2.3.2

START I* is an array of Level 0, Level 1, and Level 2 di-

mension grid points over which this record begins

to apply. The first OBJDESC.NDIM0 elements
correspond to the Level 0 dimensions. The mid-

dle OBJDESC.NDIM1 elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2

elements correspond to the Level 2 dimensions.

Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-

tion 2.3.2

is an array of Level 0, Level 1, and Level 2 dimension

grid points over which this record stops applying. The
first OBJDESC.NDIM0 elements correspond to the
Level 0 dimensions. The middle OBJDESC.NDIM1

elements correspond to the Level 1 dimensions. The

last OBJDESC.NDIM2 elements correspond to the
Level 2 dimensions. A value of-1 indicates the last

grid point of that dimension. Counting begins at 0 or
1 as specified in TEST.SPECB.IDXSTART. See the
discussion in Section 2.3.2

is the processing code. This code is explained in Sec-
tion A.2.3

is the number of values in the PROCVAL.INFO field.

These values have meaning in terms of the CODE
field, and PRCNUM should match the number of val-

ues implied by the CODE field. If no values are ex-

pected, then this should be set to zero, and there will

END I*

CODE I

PRCNUM I

54

NDUPS

RESERVE0

CHAPTER 2. SPECIFICATION OF TIlE FORMAT

be no PROCFORM or PROCVAL records associated

with this PROCSPEC record

I is the number of PROCDUP records associated with

this PROCSPEC record

I is reserved for fllture expansion

2..I. IIi,;(_'()HI) TYi'E I"OilMAT SI)I'J('II"I(!ATION,S 55

2.4.10 PROCFORM

This record type specifies the format of the values of the proce,_sing
information in PRO('VAI,.INI"O. There re,st t)e one record for each

I)I_,()(_SI)I,;(_ recor<l ,.h,.ss I)I_O(_SI)I",(',.PI¢,(_NIJM is zero. 'l'h('.re ar(,

I)RO(',SI)E(',.I)H.(',NIIM <+l+'me,l,s i. Ill(' I)1_(_I"MT array: ore" fiJr ('a<'h vahu'

in the IH¢OCVAI,.INI"O lield.

rlarlle

RECTYPE

RECSORT

PRCFMT

format descril)tion

I is the record tyl)e code = 51

l is l,he same i,dex as I,he corresl)omlilig

PItO(JSI)E(J. ltl.;(_SOllSr liehl

I* is the format code of the processing wtlues ill the

PRO(_'VAL.INI"O liehl. These c()d_'s are explained in
Se(_tio, A. 1. l

2.4.20 PROCVAL

This recor(I type specifies the values a.usociate(I with the processing in-
formation. 'rh(+'re ITIII.',It I)e one recor(I for each PR()(J,SI)I"+(' record, uvl-

less I)I{OCSI)E('.PI(('NUM is zero. There are I)I{O(JSPEC.I)RCNUM el-

erne,ts in the, INFO array.

n all]e format (lescription

RECTYPE i is the record type code = 52

RECSORT I is the same index a.u the corresponding
PROCSPEC.RECSORT field

INFO 1" contains the values needed for interpreting the

processing codes. Their formats are specified in
PROCFORM.PRCFMT

56 CIIAPTER 2. SPECIFICATION OF THE FORMAT

2.4.21 PROCDUP

This record type specifies additional Level 0, Level 1, and Level 2 dimen-

sional (grid points) ranges over which the same processing code and associ-
ated values apply as were specified ill a previous PROCSPEC record. There

will be PROCSPEC.NDUPS records ill this record type, aud this record

type will not be present if PROCSPEC.NDUPS is zero. There can be an

overlap of grid points specified in the START and END fields for different

records, since there can be different processing codes for the same subset
of data.

name format

RECTYPE I

RECSORT I

PINDEX I

START I*

END I*

description

is the record type code = 53

is tlle same index as the corresponding

PROCSPEC.RECSORT field

is an index for sorting PROCDUP records associ-

ated with a given PROCSPEC record. Lower valued
records will be processed before higher valued records.
See the discussion in Section 2.3.2

is an array of Level 0, Level 1, and Level 2 di-

mension grid points over which this record begins

to apply. The first OBJDESC.NDIM0 elements

correspond to the Level 0 dimensions. The mid-
dle OBJDESC.NDIM1 elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2

elements correspond to the Level 2 dimensions.

Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-

tion 2.3.2

is an array of Level 0, Level 1, and Level 2 dimension

grid points over which this record stops applying. The
first OBJDESC.NDIM0 elements correspond to the

Level 0 dimensions. The middle OBJDESC.NDIM1

elements correspond to the Level 1 dimensions. The
last OBJDESC.NDIM2 elements correspond to the
Level 2 dimensions. A value of-1 indicates the last

grid point of that dimension. Counting begins at 0 or

1 as specified in TEST.SPECB.IDXSTART. See the
discussion in Section 2.3.2

2.4. RECORD TYPE FORMAT SPECIFICATIONS 57

2.4.22 AUXSPEC

This record specifies what kind of auxiliary information follows in an
AUXVAL record. The data object will contain OBJDESC.NAUX records

of this record type, and no records of this type if OBJDESC.NAUX is zero.

Multiph: Auxgroup record groups can exist covering ow_rlapping ranges in
the START and END fields. Each record will be processed in order of

the RECTYPE index, higher-numbered records taking precedence over the
lower-numbered records where conflicts exist.

name format description

RECTYPE I is the record type code = 80

RECSORT I is the index for sorting the records. Lower valued

records will be processed before higher valued records.
See the discussion in Section 2.3.2

NUMREF I the number of dimensions the auxiliary information
refers to.

NUMAPP 1 is the number of dimensions the auxiliary information
applies to.

START I* is an array of Level 0, Level l, and Level 2 dimen-

sion grid points beginning with which this Auxgroup
start to be valid. The first OBJDESC.NDIM0 ele-

ments correspond to the Level 0 dimensions. The

middle OBJDESC.NDIM1 elements correspond to
the Level 1 dimensions. The last OBJDESC.NDIM2

elements correspond to the Level 2 dimensions.

Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-
tion 2.3.2

is an array of Level 0, Level 1, and Level 2 dimen-

sion grid points beyond which this Auxgroup is no
longer valid. The first OBJDESC.NDIM0 elements

correspond to the Level 0 dimensions. The mid-

dle OBJDESC.NDIM1 elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2 el-

ements correspond to the Level 2 dimensions. A

value of -1 indicates the last grid point of that di-

mension. Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-
tion 2.3.2

is the data format code. This code is explained in
Section A. 1.1

END I*

AUXFMT I

58

AUXTYPE

UNITS

NUMSUP

RESERVE0

RESERVE1

('ilA I>TEII 2. Si'I,'('II"I('ATI()N (')1" Till,; I,'()liMAT

I is the quantity code for the auxiliary infornmtion.

Note that the full meaning of this code may (h'i>cnd

upon the quantity code of the data or dimensions to
whic|t the auxiliary information refi,rs. This code is

exl)laim'd in Section A.I.:l

I is I hc units ('o(h' fi>r Ihc auxiliary inl'ornl;_lioii. This

code is exl)lained in Section A.I.,t. If this [iehl is zero,
then there wilt either I)(' no units or the units will I)e

the same as tho data and dimensiol_S that the auxil-

iary infor,na.l.iOll refers to

I is I.he ,mini)or of wdues i,I the AUXSI, IP.SVAI,S ilcld

which follows. If zero, then there will be no AUXSlll _
record

I is reserw'd for future expansion

I is reserw'd fo," future ,'xpansion

2.,1. RECORD TYPE FORMAT SPECIFICATIONS 59

2.4.23 AUXRANGE

This record type specifies the dimensions to which an Auxgroup refers and

over which it applies.

name _rmat

RECTYPE I

RECSORT I

REFLEV I*

REFNDEX I*

APPLEV I*

description

is the record type code = 81

is the same index as the corresponding
AUXSPEC.RECSORT field

is an AUXSPE(S',.NUMREF-element array of the di-

mension level (and, if this Auxgroup is associated

with a DESCRIP record dimensional description, the

DINDEX of that DESCRIP record as well) of each di-
mension to which this Auxgroup refers. The LEVEL

bit field must be the same as in the corresponding

DESCRIP or DESCRIP[LEVEL] record. Each ele-

ment of this array has the structure:

LEVEL (bits 0-1) th_ level of the dimension

DINDEX (bits 2-31) if zero, the dimension re-

ferred to is defined by a DESCRIP1, DESCRIP2,

or DESCRIP3 record; otherwise, it is de-

fined by the DESCRIP record whose LEVEL,
NDEX and DINDEX fields match this record's

REFLEV.LEVEL, REFNDEX, and
REFLEV.DINDEX fields

is an AUXSPEC.NUMREF-element array of the in-

dices of the dimensions (within their respective Lev-

els) to which this Auxgroup refers. Note that

these refer to the NDEX fields of the DESCRIP1,

DESCRIP2, DESCRIP3, or DESCRIP records, and
not to indices of the actual data array

is an AUXSPEC.NUMAPP-element array of the di-

mension level (and, if this Auxgroup is associated

with a DESCRIP record dimensional description, the

DINDEX of that DESCRIP record as well) of each
dimension over which this Auxgroup applies. The
LEVEL bit field must be the same as in the cor-

responding DESCRIP or DESCRIP[LEVEL] record.

Each element of this array has the structure:

LEVEL (bits 0-1) the level of the dimension

6O

APPNDEX

RESERVE0

RESERVE1

CIIAPTER 2. SPECIFICATION OF THE FORMAT

DINDEX (bits 2-31) if zero, the dimension over

which the Auxgroup applies is defined by a

DESCRIPI, DESCRIP2, or DESCRIP3 record;

otherwise, it is defined by the DESCRIP record

whose LEVEL, NDEX and DINDEX fields match

this record's APPLEV.LEVEL, APPNDEX, and
APPLEV.DINDEX fields

I* is an AUXSPEC.NUMAPP-e[ement array of the

indices of the dimensions (within their respec-

tive Levels) over which this Auxgroup applies.
Note that these refer to the NDEX fields

of the DESCRIP1, DESCRIP2, DESCRIP3, or
DESCRIP records, and not to indices of the ac-

tual data array. Also, note that a reference dimen-

sion (as given by the AUXRANGE.REFLEV and

AUXRANGE.REFNDEX fields) may be repeated in

the list of application dimensions. This means that

the auxiliary values vary over a qu_.utity to which they
refer; for example, if the auxiliary values are uncer-

tainties in a vector wind field, then tlle North South

component might vary from the East-West compo-
nent. The application dimensions, together with the

START-END pairs from the AUXSPEC record, de-

termine which component this Auxgroup refers to. If

a reference dimension is not repeated among tile ap-

plication dimensions, then the Auxgroup is considered

to refer to the entire range of that reference dimension

I is reserved for future expansion

I is reserved for future expansion

2.,1. RECORD TYPE FORMAT SPECIFICATIONS 61

2.4.24 AUXVAL

This record type specifies the auxiliary information values associated with
an Auxgroup. There must be one record for each AUXSPEC record.

llam," _)rlllat

RECTYPE I

RECSORT I

AVALS '_*

description

is tile record type code = 82

is the same index as the corresponding
AUXSPEC.RECSORT field

all array of auxiliary data values. Their for-

mat is given by AUXSPEC.AUXFMT. These val-

ues constitute an array whose size and shape

corresponds to the AUXRANGE.APPLEV.LEVEL,
and AUXRANGE.APPNDEX fields. That is,

the first index into tiffs array corresponds to

the AUXRANGE.APPNDEX[I]'th (limension at. the

AUXRANGE.APPLEV[I]'th level, and so on through

;all the application dimensions. The size of the

AVALS field along each of its array dimensions is

given by the range specified by those elements of the
AUXSPEC.START and AUXSPEC.END fields which

is associated with the application dimension to which

the AVALS array dimension corresponds. In the case

of a START END pair which covers the entire range

of a dimension, the size will be the mmaber of grid
points along that application dimension.

62 CIIA PTER 2. SPEC7FICATION OF THE FORMAT

2.4.25 AUXSUP

This record type specifies any supplementary values associated with this

Auxgroup. There must be zero or one of these records for each AUXSPEC

record... The meaning of the supplemental values depends upon the
AUXSUP.CODE field.

name

RECTYPE

RECSORT

RESERVE0

CODE

format description

I is the record type code = 82

I is the same index as

AUXSPEC.RECSORT field

I is reserved for future expansion

SVALS

the corresponding

I is the supplemental code which specifies the meaning
of the SVALS. This code is discussed in Section A.1.6

F* an array of AUXSPEC.NUMSUP values used to help

interpret the auxiliary information.

2.4. REC!ORD TYPE FORMAT SPECIFICATIONS 63

2.4.26 PAKSPEC

This record type specifies how the data are packed. The data object will

contain OBJDESC.NPACKS records of this record type, and no records

of this type if OBJDESC.NPACKS is zero. The records will be processed

in order of their RECSORT fields. There can be an o'_erlap of grid points

specified in the START and END fields, but this use is strongly discouraged.

name format description

RECTYPE I is the record type code = 60

RECSORT I is the index for sorting the records. Lower valued

records will be processed before higher valued records.
See the discussion in Section 2.3.2

START I* is an array of Level 0, Level 1, and Level 2 di-

mension grid points over which this record begins

to apply. The first OBJDESC.NDIM0 elements

correspond to the Level 0 dimensions. The mid-

dle OBJDESC.NDIMI elements correspond to the
Level 1 dimensions. The last OBJDESC.NDIM2

elements correspond to the Level 2 dimensions.

Counting begins at 0 or 1 as specified in
TEST.SPECB.IDXSTART. See the discussion in Sec-

tion 2.3.2

END I* is an array of Level 0, Level 1, and Level 2 dimension

grid points over which this record stops applying. The

first OBJDESC.NDIM0 elements correspond to the
Level 0 dimensions. The middle OBJDESC.NDIM1

elements correspond to the Level 1 dimensions. The

last OBJDESC.NDIM2 elements correspond to the
Level 2 dimensions. A value of-1 indica-tes the last

grid point of that dimension. Counting begins at 0 or

1 as specified in TEST.SPECB.IDXSTART. See the
discussion in Section 2.3.2

CODE I is the packing code. This code is explained in Sec-
tion A.1.5

RESERVE0 I is reserved for future expansion

RESERVE1 I is reserved for future expansion

DPAKFMT I is the format of the packed data values in

the PAKDAT.VALS field. (After unpacking,
the data will have the format as specified in

DESCRIP0.DATFMT.) See Section A. 1.1

64

PAKNUM

CHAPTER 2, SPEC'IFIC'ATION OF THE FORMAT

is tile number of values in the PAKVAL.INFO field.

PAKNUM should match the number of values implied

by the CODE field. If there are no values, then this

should be set to zero, and there will be no PAKFORM
record and no PAKVAL.INFO field

2.4. RECORD TYPE FORMAT SPECIFICATIONS 65

2.4.27 PAKFORM

This record type specifies the format of the values of the packing
information in PAKVAL.INFO. There must be one record for each

PAKSPEC record, unless PAKSPEC.PAKNUM is zero. There are

PAKSPEC.PAKNUM elements in the PAKFMT array, one for each value
in the PAKVAL.INFO field.

name

RECTYPE

RECSORT

PAKFMT

format description

I is the record type code = 61

I is the same index as the corresponding
PAKSPEC.RECSORT field

I* is the format code of the packing information values in

the PAKVAL.INFO field. These codes are explained
in Section A.I.1

2.4.28 PAKVAL

This record type specifies the values for the processing informa-

tion. There must be one record for each PAKSPEC record, even if

PAKSPEC.PAKNUM is zero, since the PAKBAD value must still be speci-

fied. There are PAKSPEC.PAKNUM elements in the INFO array, and this
number may be zero.

name _rmat

RECTYPE I

RECSORT I

PAKBAD

INFO I*

description

is the record type code = 62

is the same index as the corresponding
PAKSPEC.RECSORT field

is the bad-data flag value of the packed data in the

PAKDAT.VALS field. The unpacked data will use

BADVAL.VALUE as the bad-data flag. The format
of this field is specified in PAKSPEC.DPAKFMT

contains the values needed for interpreting the
packing codes. These values have meaning as implied

by the PAKSPEC.CODE field. The format is speci-
fied in PAKFORM.PAKFMT. If there are no values

needed for the packing method, then this field will not
exist, and PAKSPEC.PAKNUM will be set to zero

66 CtIAPTER 2. SPECIFICATION OF TIIE FORMAT

2.4.29 COMPSPEC

This record type specifies how the data are compressed. The data ob-

ject will contain OBJDESC.CMPNUM records of this record type, and no
records of this type if OBJDESC.CMPNUM is zero.

name format description

RECTYPE I is the record type code -- 70

CODE I is the compression code. This code is explained in
Section A. 1.7

COMPNUM I is the number of values in tile COMPVAL.INFO field.

COMPNUM should match the number of values im-

plied by the CODE field. If there are no values,

then this should be set to zero, and there will be no
COMPFORM or COMPVAL records

RESERVE0 I isreserved for future expansion

RESERVE1 I is reserved for fllture expansion

2.4. RECORD TYPE FORMAT SPECIFICATIONS 67

2.4.30 COMPLEN

name format

RECTYPE I
LENGTHS I*

This record type specifies the length in bytes of each COMPDAT record

(of which there are OBJDESC.CMPNUM). Thus, languages which need to
know how long a record is before it is read will be able to tell how long the
COMPDAT records are.

description

is the record type code = 71
is an array of the lengths in bytes of the
COMPDAT.VALS field in each COMPDAT record.

(Note, then that these lengths do not include the
length of the RECTYPE field in those records

2.4.31 COMPFORM

This record type specifies the format of the values of the com-

pression information (i.e., parameters) in COMPVAL.INFO. There are
COMPSPEC.COMPNUM elements in the COMPFMT field array, one for
each value in the COMPVAL.INFO field. If COMPSPEC.COMPNUM is

zero, this record will not exist.

name format description
RECTYPE I is the record type code = 72

COMPFMT I* is the format code of the compression information val-
ues in the COMPVAL.INFO field. These codes are

explained in Section A. 1.1

2.4.32 COMPVAL

This record type specifies the format of the values of the compression in-
formation. There must be one record for each COMPSPEC record, unless
COMPSPEC.COMPNUM is zero. There are COMPSPEC.COMPNUM

elements in the INFO array.

name format description

RECTYPE I is the record type code = 73
INFO I* contains the values needed for interpreting the com-

pression codes. These values have meaning as implied

by the COMPSPEC.CODE field. The format is spec-
ified in COMPFORM.COMPFMT

68 CHAPTER 2. SPECIFICATION OF THE FORMAT

2.4.33 REGDAT

This record type contains the actual data values if the data have not been

packed or compressed. The number of REGDAT records is the multiplica-
tive summation of the DIMSPEC2.GPTNUM values. The number of ele-

ments in in the VALS field of each record is the multiplicative summation
of all the DESCRIP1.GPTNUM and DIMSPEC0.GPTNUM values. The

format of the data in the VALS field is given in DESCRIPODATFMT.

name format description

RECTYPE I is the record type code = 100
VALS 9. contains the data values

2.4.34 PAKDAT

This record type contains the packed data values if the data have been
packed but not compressed. The number of PAKDAT records is the multi-

plicative summation of the DIMSPEC2.GPTNUM values. The number of

elements in the VALS field of each record is the multiplicative summation
of all the DESCRIP1.GPTNUM and DIMSPEC0.GPTNUM values. The

format of the VALS field is given in PAKSPEC.DPAKFMT.

name format description

RECTYPE I is the record type code = 110

VALS '_* contains the packed data values

2.4.35 COMPDAT

This record type contains the compressed data values. There are
OBJDESC..CMPNUM of these COMPDAT records. The VALS field con-

tains a byte array of compressed values; the lengths of the i'th field is given

by the i'th element of the COMPLEN.LENGTHS array. When this field is

uncompressed, it will contain the values as specified in a series of PAKDAT
or REGDAT records without those records' RECTYPE fields.

name format

RECTYPE I

VALS 7.

description

is the record type code = 120

contains the compressed data values

Chapter 3

Discussion and Examples
of the Format

In this chapter examples are presented as an aid to understanding the

structures defined and explained in Chapter 2. Space does not permit

listing entire example programs here; therefore, isolated fragments of code

are used to illustrate concepts. These fragments are written in Fortran, C

code, and IDL (Interactive Data Language, from Research Systems, Inc.,

of Boulder, Colorado). The reader who is unfamiliar with one or more of
these languages should still be able to follow the examples. Note that the

programming statements shown are merely illustrative--data declarations,

error checking, el cetera, are omitted here, although such things would be

necessary in any working program. In other words, these code fragments

are examples to be studied, not templates to be copied slavishly.

The first section, for example, deals with writing the TEST record in
several languages. In Section 3.2, examples illustrate how dimensions are

specified in a df dataset. In Section 3.3, the use of the START and END

fields found in various records is shown. In Section 3.4, the information in

the AUDIT record is discussed. Finally, in Section 3.5, various examples

are provided showing how to specify auxiliary information.

3.1 TEST records

We present two code fragments for writing out the information in the TEST
record. The first example is coded in C, the second in Fortran. These two

examples will illustrate the differences in the TEST record when using
different programming languages.

69

70 CHAPTER 3. DISCUSSION AND EXAMPLES OF TIlE FORMAT

3.1.1 Silicon Graphics Iris workstation, using C

/* declare the test record as a 24-element byte array */

char testrec[24] ;

/* MAGIC: we load in the magic number */

testrec[O] = 0x47 ;

testrec[l] = Oxf3 ;

testrec[2] = 0x46 ;

testrec[3] = Oxe3 ;

/* MACHID: SGI Unix workstation */

testrec[4] --2 ;

/* NUMOBJECTS: We want to write out one object, so

this can be either 0 or I */

testrec[5] = 0 ;

/* SPECA: We are using ASCII characters, and SGIs are

big-endian machines */

testrec[6] = Ox01 ;

/* RESERVEDI */

testrec[7] = 0 ;

/* RECHDR: This is a C program using normal I/O

functions, so the file will be a pure stream of

bytes */

testrec[8] = 1 ;

/* RESERVED2 */

testrec[9] = 0 ;

/* SPECB: This is C, so we are using row-major array

ordering, and our array indices start with zero */

testrec[lO] = OxO0 ;

/* SLEN: a short integer is 16 bits on an SGI */

testrec[ll] = 16;

3.1. TEST RECORDS 71

/* LLEN: a long integer is 32 bits */

testrec[12] = 32;

/* FLEN: a floating-point number is 32 bits */

testrec[13] = 32;

/* DLEN: a double precision floating-point number is

64 bits */

testrec[14] = 64;

/* FPFORM: SGI machines use IEEE floating-point

formats */

testrec[15] = Oxll;

/* RESERVED3 */

testrec[16] = 0 ;

/* RESERVED4 */

testrec[17] = 0 ;

/* RESERVED5 */

testrec[18] = 0 ;

/* RESERVED6 */

testrec[19] = 0 ;

/* RESERVED7 */

testrec[20] = 0 ;

/* RESERVED8 */

testrec[21] = 0 ;

/* RESERVED9 */

testrec[22] = 0 ;

/* RESERVEDIO */

testrec[23] = 0 ;

/* now write out the record */

(void) fwrite(testrec, sizeof(char), 24, outfile);

3.1.2 VAX running VMS using Fortran

C234567

C We declare the test record as an array of bytes

INTEGER*I TESTREC(24)

C

72 CtlAPTER 3. DISCUSSION AND EXA,'_IPLES OF TIlE FORMAT

C MAGIC: We load in the magic number (in decimal)

TESTREC(1) = 71

TESTREC(2) = -13

TESTREC(3) = 70

TESTREC(4) = -29

MACHID: VAX/VMS

TESTREC(5) = I

NUNOBJECTS: We will write only one object,

so this can be 0 or I.

TESTREC(6) = 0

SPECA: We use ASCII, and the VAX is a little-endian

machine

TESTREC(7) = 13

RESERVED1

TESTREC(8) = 0

RECHDR: We are using VAX Fortran Record Headers

(I.e., segmented variable length records)

TESTREC(9) = 2

RESERVED2

TESTREC(IO) = 0

SPECB: In Fortran, arrays are in column-major order,

and array indices start from 1.

TESTREC(I1) = 3

SLEN: On a VAX, a short integer is 16 bits

TESTREC(12) = 16

LLEM: On a VAX, a long integer is 32 bits

TESTREC(13) = 32

FLEN: On a VAX, a floating-point number is 32 bits

TESTREC(14) = 32

DLEN: On a VAX, a double precision floating-point

number is 64 bits

3.2. DIMENSIONAL LEVELS 73

TESTREC(15) = 64

FPFORM: We are using VAX format floating-point numbers

(VAX D for double precision).

TESTREC(16) = 34

NORE RESERVED...

TESTREC(17) = 0

TESTREC(18) = 0

TESTREC(19) = 0

TESTREC(20) = 0

TESTREC(21) = 0

TESTREC(22) = 0

TESTREC(23) = 0

TESTREC(24) = 0

Now write it all out

WRITE(LUNIT) TESTREC

3.2 Dimensional Levels

Following are examples of specifying dimensions for several different data

objects. We first present an example specifying a scalar data object with

uncomplicated dimensions. In the second example, we add the complica-

tions of using a vector data object and dimension indices which are defined

in a different order than the data array's indices. In the third example, a

tensor data object is used, to make things even more complicated.
These first three examples consider only cases where the Level 1 dimen-

sions do not vary over the Level 2 dimensions (i.e., all of the data records

are the same size.) In the last two examples, we present cases where they
do vary. The first shows a complex data object, where two related quan-

tities are combined as components of a vector. Finally, the last example

illustrates the use of nonauthoritative dimension descriptors.

3.2.1 Example 1. Scalar (Temperature)

Consider a data object consisting of temperatures measured over a

longitude-latitude grid and a set of standard atmospheric pressure levels.

There may be one or more observations in time; we will suppose that we

have only one set of data, valid for 22 July 1991. The longitudes will run

74 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

every 5 degrees starting from 0, and the latitudes will run every 2 degrees

starting from -90. We further suppose that the data will lie on 6 pressure

surfaces: 1000, 850,700, 500, 250, and 100 mb.

Temperature is a scalar, and so the data object will have a single Level 0

dimension having one element. A natural way to think of the data is as
a set of six two-dimensional arrays. That is, we will have two Level 1

dimensions, longitude and latitude, and at least one Level 2 dimension:

pressure. Because we have data for only one time, there are several ways
we could indicate this in the file: putting a time stamp in an INFOSPEC

or COMMENT record, adding it in as a Level 1 or Level 2 dimension, or

making time a Level 3 dimension whose average type is the oxymoronic
"instantaneous." We choose to have time as a second Level 2 dimension

with one grid point.
We choose to write the data as a 72 x 91 x 6 (i.e, longitude, latitude,

pressure) array.
If our indices start numbering at 0, then we have the following record

fields:

OBJDESC.

DIMSPEC0.

DIMSPEC1.

DIMSPEC2.

DESCRIP0.

DESCRIP1.

NDIM0 = 1

NDIM 1 = 2

NDIM2 = 2

NDIM3 = 0

INDEX =-1

GPTNUM = 1

INDEX = (0, 1)
DESNUM = (1, i)

INDEX = (2, 3)

GPTNUM = (6, 1)
DATFMT = single precision floating-point

VARTYPE = temperature
UNITS = K

DEXSORT = 0

NDEX = 0

RECSORT = 0

START = (0, O)
END = (-1,-1)
GPTNUM = 72

DUPNUM = 0

DESSUP = 0

DESFMT -- long integer

DESTYPE -- longitude

UNITS -- degree

3.2. DIMENSIONAL LEVELS 75

DESCVAL.

DESCRIPI.

DESCVAL.

DESCRIP2.

DESCVAL.

DESCRIP2.

STORG --1

DLEVEL --1

LEVEL = 1

DINDEX = 0

DEXSORT = 0

NDEX --0

RECSORT = 0

AVALS --(0,5)
DEXSORT -- 1

NDEX -- I

RECSORT = 0

START = (0, 0)

END = (-1,-1)
GPTNUM = 91

DUPNUM -- 0

DESSUP = 0

DESFMT = long integer
DESTYPE -- latitude

UNITS -- degree
STORG -- 2

DLEVEL -- 1

LEVEL -- 1

DINDEX -- 0

DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS = (-90, 90)
NDEX -- 0

DUPNUM -- 0

DESSUP = 0

DESFMT -- single precision floating-point

DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT -- 0

NDEX = 0
RECSORT = 0

AVALS = (1000., 850, 700., 500., 250, 100.)
NDEX -- 1

76 CIIAPTER 3. DISCUSSION AND EXAMPLES OF TIlE FORMAT

DESCVAL.

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = day of year
STORG = 0

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT = I

NDEX = l

RECSORT = 0

AVALS = 2O3

In IDL, then, code to define the dimensions of this data object would
look like this:

; set up the relevant elements in the 0BJDESC record

RECTYPE = long(1)

NDIMO = long(i)

NDINI = long(2)

NDIM2 = long(2)

NDIM3 = long(0)

writeu,log_file_unit, RECTYPE, vartype, reserved $

, NDIMO, NDIMI, NDIM2, NDIM3, reserved, isource $

, reserved, reserved, naudit, ninfo, ncomms, comcod $

, reserved, nbade, reserved, nprocs, reserved, npacks $

, reserved, reserved, cmpnum, reserved, reserved $

, reserved

; set up the DIMSPECO record

RECTYPE = long(20)

; Since Temperature is a scalar, there is no array index

, for this to point to.

INDEX = long(-l)

3.2. DIMENSIONAL LEVELS 77

; Since temperature is a scalar, there is only one grid

; point.

GPTNUM = long(1)

writeu,log_file_unit, RECTYPE, reserved, reserved $

, INDEX, GPTNUM

; set up the DIMSPECl record

RECTYPE = long(21)

; longitude and latitude will be the first and second

; dimensions of the data array read in.

INDEX = long([O, I])

; ,e will specify only one DESCRIPI record for each

; dimension

DESNUM = long([1, I])

writeu,log_file_unit, RECTYPE, reserved, reserved $

, INDEX, DESNUM

; set up the DIMSPEC2 record

RECTYPE = long(22)

; pressure and time will be the third and fourth

; dimensions of the data array read in.

INDEX = long([2, 3])

; There will be five pressure levels and one time

GPTNUM = long([6, 1])

writeu,log_file_unit, RECTYPE, reserved, reserved $

, INDEX, GPTNUM

; (There is no DIMSPEC3 record.)

; set up the DESCRIPO record

RECTYPE = long(30)

; data are floating-point single precision numbers

DATFMT = long(67108864)

; data are temperatures

; Note: in actual working code, one would call here a

; function which would convert the string "Temperature"

; to its quantity ID code 16777216:

; vartype = name_to_number("temperature")

VARTYPE = long(16777216)

; the temperatures are in Kelvin

UNITS = long(681060112)

78 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

writeu,log_file_unit, RECTYPE, reserved, reserved $

, DATFMT, VARTYPE, UNITS

; set up the longitude DESCRIP1 record

RECTYPE = long(31)

; This describes the first Level 1 dimension

NDEX = long(O)

; This covers the entire range of both Level 2 dimensions

START = long([O, 0])

; (Note: END is a reserved word in IDL, so we use ENDIT

; here)

ENDIT = long([-i, -I])

; There are 72 longitudes

GPTNUM = long(72)

; No duplicate records

DUPNUM = long(O)

; No supplemental information

DESSUP = long(O)

; longitudes are long integers

DESFMT = Iong(51445760)

; the quantity id for longitude is 17838080

DESTYPE = long(17838080)

; The units code for degrees is 1745355010

UNITS = long(1745355010)

; We will store this as a an implicit

; (lo.-value, interval) pair

STORG = long(1)

writeu,log_file_unit, RECTYPE, NDEX, START, ENDIT $

, GPTNUM, DUPNUM, DESSUP, DESFMT, DESTYPE, UNITS $

, STORG, reserved, reserved

; set up the longitude DESCVAL record

RECTYPE = long(35)

; This belongs to Level I, dimension number 1

LEVEL = long(l)

IDEX = long(O)

; We start at 0 longitude and increase by 5 degrees

; thereafter

AVALS = long([O, 5])

writeu,log_file_unit, RECTYPE, LEVEL, NDEX, AVALS

3.2. DIMENSIONAL LEVELS

; Now do the latitude DESCRIPI and DESCVAL records

; (This is more terse, to show that you do not really

; need a lot of code to write these records; as an

; exercise, the reader may wish to interpret the

; following). The quantity code for latitude is

; 17838096

writeu,log_file unit, long(31), long(1), long([O,O]) $

, long(I-I,-1]), long(91), long(O), long(O) $

, long(51445760), long(17838096), long(1745355010) $

, long(2), reserved, reserved

writeu,log_file_unit, long(3S), long(l), long!l) $
, long([-90, 90])

; Do the pressure DESCRIP2 record

RECTYPE = long(32)

; This describes the first Level 2 dimension

NDEX = long(O)

; No duplicate records

DUPNUM = long(O)

; No supplemental information

DESSUP = long(O)

; pressures are floating-point numbers

DESFMT = long(67108864)

; the quantity id for pressure is 16781312

DESTYPE = long(16781312)

; The units code for millibars is I081S93921

UNITS = long(I081893921)

; We will store this as a an explicit array

STORG = long(O)

writeu,log_file_unit, RECTYPE, NDEX, DUPIUM, DESSUP $

, DESFMT, DESTYPE, UNITS, STORG, reserved, reserved

; set up the pressure DESCVAL record

RECTYPE = long(35)
q

; This belongs to Level 2, dimension number 1

LEVEL = long(2)

NDEX = long(O)

; We list the pressure levels

AVALS = float([lO00., 880., 700., 600., 250., 100.])

,riteu,log_fileunit, RECTYPE, LEVEL, NDEX, AVALS

79

80 CtlAPTER 3. DISCUSSION AND EXAMPLES OF TIlE FORMAT

; do the time dimension spec (tersely: another exercise

; for the reader. The format code for long unsigned

; integers is 50397184, the quantity code for time is

; 131072, and the units code for day number (from

; January I) is 1615331845. July 22 was the 203rd

; day of 1991.

writeu,log_file_unit, long(32), long(l), long(O) $

, long(O), iong(50397184), Iong(131072) $

, Iong(1615331845), long(O), reserved, reserved

writeu,log_file_unit, long(35), long(2), long(l) $

, long(203)

3.2.2 Example 2. Vector (Wind)

Consider a data object consisting of a wind vector measured over a

longitude-latitude grid and standard atmospheric pressure levels, as in the

previous example. The winds are averages over ten years for each day in

January. Each wind measurement is a vector having three components (u,

v, w), one along each of the dimensions of longitude, latitude, and pressure.
Thus the data have one Level 0 dimension with three elements. Longi-

tude and latitude are Level 1 dimensions as in the previous example, but

this time we make pressure a Level 1 dimension, too, instead of Level 2.

We choose to write the data out as a 6 x 3 × 91 x 72 x 31 array (i.e.,

pressure, wind component, latitude, longitude, day of month).

If our indices start numbering at 0, then we have the following record
fields:

OBJDESC. NDIM0 = 1
NDIM1 = 3

NDIM2 = 1

NDIM3 = 1

DIMSPEC0. INDEX = 1
GPTNUM = 3

DIMSPEC1. INDEX = (3, 2, 0)

DESNUM = (1, 1, 1)
DIMSPEC2. INDEX = 4

GPTNUM = 31

DIMSPEC3. DESNUM = 1

DESCRIP0. DATFMT = (single precision floating-point, single preci-

sion floating-point, single precision floating-point)

O_

3.2. DIMENSIONAL LEVELS

DESCRIP1.

DESCVAL.

DESCRIP1.

DESCVAL.

DESCRIP1.

VARTYPE = (u, v, w)

UNITS = (m/s, m/s, cm/s)
DEXSORT = 1

NDEX = 1

RECSORT = 0
START = 0

END = -1

GPTNUM = 91

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = latitude

UNITS = degree
STORG = 2

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS = (-90, 90)
DEXSORT = 0

NDEX = 0

RECSORT = 0

START = 0

END = -1

GPTNUM = 72

DUPNUM = 0
DESSUP = 0

DESFMT = long integer

DESTYPE = longitude

UNITS = degree
STORG = 1

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 0
NDEX = 0

RECSORT = 0

AVALS = (0,5)
DEXSORT = 2

NDEX = 2

81

=

_=

82 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

DESCVAL.

DESCRIP2.

DESCVAL.

DESCRIP3.

RECSORT = 0
START = 0

END = -I

GPTNUM = 6

DUPNUM = 0

DESSUP = 0

DESFMT = single precision floating-point
DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0
DEXSORT = 2

NDEX = 2

RECSORT = 0

AVALS = (1000., 850., 700,500., 250, 100.)
NDEX = 0

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = day of month
STORG = 1

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT = 0

NDEX = 0

RECSORT = 0

AVALS = (1, 1)
DEXSORT = 0

NDEX = 0

RECSORT = 0

START = (0, 0, 0, 0, 0)

END = (-1,-1,-1,-1,-1)
GPTNUM = 10

AVGCOD = 1

DUPNUM = 0
DESSUP = 0

DESFMT = long integer
DESTYPE = time

3.2. DIMENSIONAL LEVELS 83

UNITS = year

STORG = 2

DESCVAL. DLEVEL = 3

LEVEL = 3

DINDEX = 0

DEXSORT = 0

NDEX = 0

RECSORT = 0

AVALS = (1983, 1992)

In IDL, then, the code for specifying the dimensions would look some-

thing like this:

; set up the relevant elements in the OBJDESC record

RECTYPE = long(l)

NDIMO = long(l)

NDIMI = long(3)

_DIM2 = long(1)

NDIM3 = long(1)

writeu,log_file_unit, RECTYPE, vartype, reserved $

, NDIHO, NDIMI, NDIM2, NDIM3, reserved, isource $

, reserved, reserved, naudit, ninfo, ncomms, comcod $

, reserved, nbads, reserved, nprocs, reserved, npacks $

, reserved, reserved, cmpnum, reserved, reserved $

, reserved

; set up the DIMSPECO record

RECTYPE = long(20)

; The wind component index is second in the actual data

; array

INDEX = long(1)

; There are three components to the wind

GPTNUN = long(3)

writeu,log_file_unit, RECTYPE, reserved, reserved $

• INDEX, GPTNUN

84 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

; set up the DINSPECI record

RECTYPE = long(21)

; longitude, latitude, and pressure are the fourth,

; third, and first dimensions of the data array read in.

INDEX = long([3, 2, 0])

; we will specify only one DESCRIPI record for each

; dimension

DESNUN = long([1, 1, 1])

writeu,log_file_unit, RECTYPE, reserved, reserved $

, INDEX, DESNUM

; set up the DIMSPEC2 record

RECTYPE = long(22)

; Time will be the fifth dimension of the data array read

; in.

INDEX = long(4)

; There will be 31 times, one for each day of January

GPTNUN = long(31)

writeu,log_file_unit, RECTYPE, reserved, reserved $

, INDEX, GPTNUN

; set up the DINSPEC3 record

RECTYPE = long(23)

; there will be only one DESCRIP3 record for the single

; Level 3 dimension

DESNUN = 1

writeu,log_file_unit, RECTYPE, reserved, reserved, DESNUM

; set up the DESCRIPO record

RECTYPE = long(30)

; data are floating-point single precision numbers

DATFNT = long(67108864, 67108864, 67108864)

; data are wind componenets (u, v, w)

; Note: in actual working code, one would call here a

; function which would convert the strings

; "measured u wind", "measured v wind", and

; "measured w wind" to the quantity codes:

; 18874368, 18878464, 18882560

VARTYPE = Iong(18874368, 18878464, 18882560)

; the wind components are in m/s, m/s, cm/s

UNITS = iong(1616347136, 1616347136, 1616347137)

3.2. DIMENSIONAL LEVELS 85

writeu,log_file_unit, RECTYPE, reserved, reserved $

, DATFMT, VARTYPE, UNITS

; low do the latitude DESCRIPI and DESCVAL records

writeu,log_file_unit, long(31), long(1), long(O) $

, long(-l), long(91), long(O), long(O), Iong(51445760) $

, long(17838096), long(1745355010), long(2), reserved $

, reserved

writeu,log_file_unit, long(3S),long(1),long(1) $

, long([-90, 90])

; Now do the longitude DESCRIPI and DESCVAL records

writeu,log_file_unit, long(31), long(0), long(O) $

, long(-1), long(72), long(O), long(O), iong(51445760) $

, long(17838080), long(1745355010), long(1), reserved $

, reserved

writeu,log_file_unit, long(35), long(1), long(O), $

, long([O, 5 3)

; Do the pressure DESCRIPI record

RECTYPE = long(31)

; This describes the third Level I dimension

NDEX = long(2)

; This covers the entire range of the single Level 2

; dimension

START = long(O)

ENDIT = long(-1)

; Six pressure levels

GPTNUM = 6

; No duplicate records

DUPNUM = long(O)

; No supplemental information

DESSUP = long(O)

; pressures are floating-point numbers

DESFMT = iong(67108864)

; the quantity id for pressure is 16781312

DESTYPE = long(16781312)

; The units code for millibars is 1081593921

UNITS = long(i081593921)

; We will store this as a an explicit array

STORG = long(O)

86 CIIAPTER 3. DISCgSSION AND EXAMPLES OF TIIE FORMAT

writeu,log_file_unit, RECTYPE, NDEX, START, ENDIT $

, GPTNUM, DUPNUM, DESSUP, DESFMT, DESTYPE, UNITS $

• STORG, reserved, reserved

; set up the pressure DESCVAL record

RECTYPE = long(38)

; This belongs to Level 1, dimension number 3

LEVEL = long(l)

NDEX = long(2)

; We list the pressure levels
AVALS = float([lO00., 850., 700., 500., 250., I00.])

writeu,log_file_unit, RECTYPE, LEVEL, NDEX, AVALS

; do the time dimension spec (DESCRIP2 and DESCVAL)

writeu,log_file_unit, long(32), long(O), long(O) $

, lonE(O) , long(50397184), long(131072) $

, long(1615331845), long(l), reserved, reserved
writeu,log_file_unit, long(35), long(2), long(O) $

, long(l, 1)

; set up the time averaging DESCRIP3 record

RECTYPE = long(33)

; This describes the first Level 3 dimension

NDEX = long(O)

; This covers the entire range of all Levels 0-2

; dimension

START = long([O, O, O, O, 0])

ENDIT = lonE([-1, -1, -1, -1, -1])

; There are 10 years in the average

GPTNUN= long(lO)
; These are arithmetic means computed from discrete sums

AVGCOD = 1

; No duplicate records

DUP_OM = long(O)

; No supplemental information

DESSUP = long(O)

; years are unsigned lon E integers

DESFMT = long(50397184)

; the quantity id for time is 131072

DESTYPE = iong(131072)

3.2. DIMENSIONAL LEVELS

; The units code for year is 1615331616

UNITS = long(1615331616)

; We will store this as a an implicit

; (low-value, high-value) pair

STORG = long(2)

writeu,log_file_unit, RECTYPE, NDEX, START, ENDIT $

, GPTNUM, AVGCOD, DUPWUM, DESSUP, DESFMT, DESTYPE $

, UNITS, STORG, reserved, reserved

; set up the lO-year average DESCVAL record
RECTYPE = long(35)

; This belongs to Level 3, dimension number 1

LEVEL = long(3)

NDEX = long(O)

; We start at 1983 increase and end at 1992

AVALS = long([1983, 1992])

writeu,log_file_unit, RECTYPE, LEVEL, NDEX, AVALS

87

Note that the specifications for the dimensions, the dimension descrip-

tors, and even the data itself do not have to be stored in any prescribed

order. This is explained in Section 2.3.2. These indices are used as pointers
from tile descriptors to the specifications to the data itself. The DESCVAL

record associated with the DESCRIP3 record will contain the year index
over which the data has been averaged. These values are not needed to

access the data values but instead they aid in interpreting the meaning of
the data.

3.2.3 Example 3. Tensor (Wind Stress)

Next, consider a data object consisting of a horizontal wind stress tensor

measured over an x-y coordinate grid at the surface of the earth. The wind

stress tensor has four components, two along each of the dimensions of the

grid. We take the z and y to be the coordinates of a 100 x 75 grid on which
the tensors are defined. Suppose further that we attach no time to these

data. (They may be time-independent estimates to be used in some sort of

simple model.)

Thus, there are two Level 0 dimensions, each having 2 grid points: S_,

Sxy, S_, Sy_, where Siy is the wind stress in the i direction on the surface

88 CtlAPTER 3. DISCUSSION AND EXAMPLES OF TtlE FORMAT

normal to tile j direction. Tile data have two Level 1 dimensions: x and y.

The data object has data records, so it must have a Level 2 dimension; we

will use a generic index counter as the Level 2 dimension.

To complicate matters just a little more, we will assume that the data

are written out as tile array: S(wind stress in x direction, x, wind stress in

y direction, y). The data object fiehls will be as follows (indices start at. l):

OBJDESC.

DIMSPEC0.

DIMSPEC1.

DIMSPEC2.

DESCRIP0.

DESCRIP 1.

DESCVAL.

DESCRIP1.

NDIM0 = 2

NDIMI = 2

NDIM2 = l

NDIM3 = 0

INDEX = (l, 3)

GPTNUM = (2, 2)
INDEX = (2, 4)

DESNUM = (1, 1)
INDEX =-1

DATFMT - (single precision floating-point, single preci-
sion floating-point, single precision floating-point, sitigle

precision floating-point)

VARTYPE = (S_., S.y, S'v., Suu)
UNITS = (Pa, Pa, Pa, ea)
DEXSORT = 1

NDEX = 1

RECSORT = 0

START = 1
END = -1

GPTNUM = 100

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = x

UNITS = no units

STORG = 1

DLEVEL = 1
LEVEL = 1

DINDEX = 0

DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS --(I,1)
DEXSORT = 2

NDEX = 2

3.2. DIMENSIONAL LEVELS 89

DESCVAL.

DESCRIP2.

DESCVAL.

RECSORT = 0

START = 1

END = -1

GPTNUM = 75

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = y
UNITS = no units

STORG = 1

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 2

NDEX = 2

RECSORT = 0

AVALS = (1, 1)
NDEX = 0

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = index

UNITS = no units

STORG = 1

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS = (1, 1)

3.2.4 Example 4. Unusual Data Object (Ozonesondes)

Consider a data object consisting of balloon-borne observations of ozone

concentrations at varying pressure levels over a set of 2000 stations on 365

days. We consider two different methods of specifying these data:

In the first case, we will define a complex data object (an "ozonesonde

data vector") consisting of a single Level 0 dimension with two components:
ozone concentration and pressure. The station identifier we will treat as

a Level 1 dimension, and the Level 2 dimension is time. The data will be

written out in the order (station ID, ozonesonde data component, time).

90 CtlAPTER 3, DISCUSSION AND EXAMPLES OF TIlE FORMAT

In this case, the data object dimensional record fields will be as follows

(indices start at 1):

OBJDESC. NDIM0 = 1

NDIMI = 1

NDIM2 = 1

NDIM3 = 0

DIMSPEC0. INDEX = 2

GPTNUM = 2

DIMSPECI. INDEX = l

DESNUM = l

DIMSPEC2. INDEX = 3

GPTNUM = 365

DESCRIP0. DATFMT = (single precision floating-point, single preci-
sion floating-point)

VARTYPE = (ozone concentration, pressure)

UNITS = (ppmv, rob)
DESCRIPI. DEXSORT = t

NDEX = 1

RECSORT = 0

START = I

END = -1

GPTNUM = 2000

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = station identifier

UNITS = no units

STORG = 0

DESCVAL. DLEVEL = 1

LEVEL = 1

DINDEX = 0
DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS = (list of 2000 station identifiers)
DESCRIP2. NDEX = 1

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = day of year

=

m

3.2. DIMENSIONAL LEVELS 91

D ESC VA L.

STORG = 1

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT = 1

NI)EX = 1

ttE(_SoR'r = 0
AVALS = (1, 1)

Alternatively, we can treat pressure as a Level 1 dimension. The first 6

months of data contain ozonesondcs at the same 18 pressure levels, while
the last 6 months contain the data at 15 levels, different from the set in

the early period. The data array is written in the order (station identifier,

presst, re, time). Note that the ozone data are now simple scalars. The data

dimensional record fields will be as follows (indices start at 1):

OI_JI)I,;SC. NDIM0 = I
NDIMI = 2

NDIM2 = 1

NDIM3 = 0

DIMSPEC0. INDEX =-1

GPTNUM = 1

DIMSPECI. INDEX = (1, 2)

DESNUM = (I, 2)
DIMSPEC2. INDEX = 3

GPTNUM = 365

DESCRIP0.

DESCRIP1.

DESCVAL.

DATFMT = single precision floating-point
VARTYPE = ozone concentration

UNITS = ppmv
DEXSORT = 1

NDEX = 1

RECSORT = 0

START = 1

END = -1
GPTNUM = 2000

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = station identifier

UNITS = no units

STORG = 0

DLEVEL = 1

92 CIIAPTI,'II 3. I)IS('lrSSION AND EXAMPLES OF TIIE FOIL_IAT

I)ES(',IHI _1.

!) ES(!VA I,.

DESCRIP 1.

DESCVAL.

I,EVEI, = 1

I)INI)EX = 0

DEXSORT = 1

NDEX = I

RE(_SORT = 0

AVA I,_ -- (list. of 2(l(10 stalion idcntific,,.s)
I)EXSORT = 65538

NDEX = 2

I_I",CSOFtT= I

S'I'AI_!I'= I

ENI) = 181

(_H'NUM = 18

i)UI_NUM = 0

I)F, SSUF' = 0

1)ESFMT = singh" precision floating-I)oit_l,
I)ESTYPE = I)ressure
UNITS = ml)

S'I'()i{(; : 0

I)[,I",VEI,: !

I,EVEI, = 1

I)INI)EX = 0

I)EXSORT = 65538

NI)EX = 2

RECSORT = I

AVALS = (list of 18 pressure levels)
1)EXSORT = 655362

NI)EX = 2

RECSORT = 10
START = 182

END = -1

GPTNUM = 15

DUPNUM = 0
DESSUP = 0

DESFMT = single precision floatingopoint
DESTYPE = pressure
UNITS -- mb

STORG = 0

DLEVEL = l

LEVEL = l

DINDEX -- 0

DEXSORT = 655362

NDEX -- 2

3.9_. DIMENSIONAL LEVELS 93

DESCRIP2.

DESCVAL.

RECSORT = 10

AVALS = (list of 15 pressure levels)
NDEX = 1

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = day of year
STORG = 1

DLEVEL = 2
LEVEL = 2

DINDEX = 0

DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS = (I, l)

3.2.5 Example 5. Nonauthoritative Dimension De-

scriptors (Ozonesondes)

This example is an extension of the previous example and is a more realistic

specification of ozonesondes. This example looks at a very small set of data,

but the data varies over all dimensions. Again, consider a data object

consisting of balloon-borne observations of ozone concentrations at varying

pressure levels, this time over a set of 4 stations (1001, 1002, 1003, 1004)

on 3 days (21-23 August 1992). Our Level 0 dimension will consist of ozone
concentration. The Level 1 dimension will be the pressure levels at each
station where the observations are recorded. There will be one Level 2

dimension consisting of a generic index. The station identifiers and the

date (specified as yymmdd, where yy = last two digits of year, mm =

month number, and dd = day of month) will be additional descriptions for

the Level 2 dimension. This is the general way to specify multiple varying
Level 2 dimensions.

The observations are taken as follows: On 21 August 1992, station 1001

reported observations at 15 pressure levels, station 1002 at 19 pressure lev-

els, station 1003 at 18 pressure levels, and station 1004 did not report. On

22 August 1992, station 1001 reported observations at 6 pressure levels,

station 1002 at 11 pressure levels, station 1003 at 20 pressure levels, and

station 1004 at 22 pressure levels. On 23 August 1992, station 1001 re-

ported observations at 12 pressure levels, station 1002 at 17 pressure levels,

station 1003 did not report, and station 1004 at 13 pressure levels. In this

case, the data object dimensional record fields will be as follows (indices

94 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

start at 0):

OBJDESC. NDIM0 = 1

NDIM1 = 1

NDIM2 = 1

NDIM3 = 0
DIMSPEC0. INDEX =-1

GPTNUM = 1

DIMSPEC1. INDEX = 0

DESNUM = 10
DIMSPEC2. INDEX = 1

GPTNUM = 10

DESCRIP0. DATFMT = single precision floating-point
VARTYPE = ozone concentration

UNITS = ppmv
DESCRIP1. DEXSORT = 0

NDEX = 0

RECSORT = 0
START = 0

END = 0

GPTNUM = 15

DUPNUM = 0

DESSUP = 0

DESFMT -- single precision floating-point
DESTYPE = pressure
UNITS = mb

STORG = 0

DESCVAL. DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 0

NDEX = 0

RECSORT = 0

AVALS = (list of 15 pressure levels)
DESCRIP1. DEXSORT = 65536

NDEX = 0

RECSORT = 1
START = 1

END = 1

GPTNUM = 19

DUPNUM = 0

DESSUP = 0

3.2. DIMENSIONAL LEVELS 95

DESCVAL.

DESCRIP 1.

DESCVAL.

DESCRIP1.

DESFMT = single precision floating-point

DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 65536

NDEX = 0

RECSORT = 1

AVALS = (list of 19 pressure levels)
DEXSORT = 131072

NDEX = 0

RECSORT = 2

START = 2

END = 2

GPTNUM = 18

DUPNUM = 0

DESSUP = 0

DESFMT = single precision floating-point

DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 131072

NDEX = 0
RECSORT = 2

AVALS = (list of 18 pressure levels)
DEXSORT = 196608

NDEX = 0

RECSORT = 3

START = 3

END = 3

GPTNUM = 6

DUPNUM = 0
DESSUP = 0

DESFMT = single precision floating-point

DESTYPE = pressure
UNITS =mb

STORG = 0

96 CHAPTER 3. DISCUSSION AND EXAMPLFS OF TIlE FORMAT

DESCVAL.

DESCRIP 1.

DESCVAL.

DESCRIP1.

DESCVAL.

DLEVEL - I

LEVEL - 1

DINDEX = 0

DEXSORT = 196608

NDEX = 0

RECSORT - 3

AVALS = (listof6 pressurelevels)
DEXSORT = 262144

NDEX = 0

RECSORT --4

STA RT = 4

END = 4

GPTNUM - II

DUPNUM --0

DESSUP = 0

DESFMT = single precision floating-point
DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX --0

DEXSORT = 262144

NDEX - 0

RECSORT = 4

AVALS - (listof II pressure levels)
DEXSORT = 327680

NDEX = 0

RECSORT = 5

START - 5

END = 5

GPTNUM = 2O

DUPNUM --0

DESSUP = 0

DESFMT - singleprecisionfloating-point

DESTYPE --pressure

UNITS -mb

STORG = 0

DLEVEL = I

LEVEL --I

DINDEX - 0

DEXSORT --327680

3.2. I)iMI_',NSIONAL LEVELS 97

DESCRIPI.

D ESC VA I,.

DESCRIPI.

DESCVAL.

DESCRIP1.

NDEX = 0

RECSORT = 5

AVALS = (list of 20 pressure levels)
DEXSORT = 393216

NDEX = 0
RE(',SORT = 6

START = 6

END = 6

GPTNUM = 22

1)UI)NUM = 0
I)ESSUP = 0

DESFMT = single precision floating-point

DESTYPE = pressure
UNITS =mb

STOR(-_ = 0

DLEVEL = 1

[,EVI,,'L = 1

DINI)EX = 0

I)EXSORT = 393216
NDEX = 0

RECSORT = 6

AVALS = (list of 22 pressure levels)
DEXSORT = 458752

NDEX = 0

RECSORT = 7

STA RT = 7

END = 7

GPTNUM = 12
DUPNUM = 0

DESSUP = 0

DESFMT = single precision floating-point

DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = 1
LEVEL = 1

DINDEX -- 0

DEXSORT = 458752

NDEX = 0

RECSORT = 7

AVALS = (list of 12 pressure levels)
DEXSORT = 524288

Z

=_..

z_

z

98 CIlAPTER 3. DISCU,qSION AND EXAMPLES OF THE FORMAT

DESCVAL.

DESCRIPI.

DESCVAL.

DESCRIP2.

NDEX = 0

RECSORT = 8

START = 8

END = 8

GPTNUM = 17

I)UPNUM = 0

DESSUP = 0

DESFMT = single precision floating-point
DESTYPE = pressure
UNITS = mb

STORG = 0

DLEVEL = I

LEVEL = 1

DINDEX = 0

DEXSORT = 524288

NDEX = 0

RECSORT = 8

AVALS = (list of 17 pre,gsure levels)
DEXSORT = 589824

NDEX = 0

RECSORT = 9

START = 9

END = 9

GPTNUM = 13

DUPNUM = 0

DESSUP = 0

DESFMT = single precision floating-point
DESTYPE = pressure
UNITS =mb

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 589824

NDEX = 0

RECSORT = 9

AVALS = (list of 13 pressure levels)
NDEX = 0

DUPNUM = 2

DESSUP = 0

DESFMT = long integer

DESTYPE = generic index

3.2. DIMENS'IONAL LEVELS 99

UNITS = no units

STORG = 1

DESCVAL. DLEVEL = 2

LEVEL = 2

DINDEX = 0

DF:XSORT = 0

N DEX = 0

RECSORT = 0

AVALS -- (0, 1)
DESCRIP. LEVEL = 2

DEXSORT = 0

NDEX = 0

RECSORT = 0

DESSUP = 0

DESFMT = long integer

DESTYPE = station identifier
UNITS = no units

STORG = 0

DINDEX = l

DESCVAL. DLEVEL = 6

LEVEL = 2
DINDEX = l

DEXSORT = 0

NDEX = 0

RECSORT = 0

AVALS = (1001, 1002, 1003, 1001, 1002, 1003, 1004, 1001,
1002, 1004)

DESCRIP. LEVEL = 2

DEXSORT = 0

NDEX = 0

RECSORT = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = YYMMDD

STORG = 0

DINDEX - 2

DESCVAL. DLEVEL = 10

LEVEL = 2

DINDEX = 2

DEXSORT = 0

NDEX = 0

IO0('IIAPTEi_3. DISCUSSION AND EXAMI'I,I",S OF THE FORMAT

RECSOffI' = 0

AVALS = (920821, 920821, 920821, 920822, 920822,

920822, 920822, 920823, 920823, 920823)

Not._, that tilt, START anti END ileitis of DESCRIPI contain the indicos

fi)r the days and slat.ions ow'r wllicl_ the different pressure" lew'l definition._

apply. Tiffs is explained furtimr in Section 2.:].2. The DESCVAL record

associated with eacl_ DESCRIPI record contains the appropriate values of

pressure.

These START and END fiehls lead us into the next set of examph,s.

3.3 START and END Fields

START and END specify the ranges of data dimensions over which certain

recortls apply. In most ca,sos, the records will apply over the full range of
all dimensions, so that the values for STA RT will be 1 (or 0, depending on

the I)eginning index value specified in TI'_S'I'.SPECI3.IDXSTAR'F) and -1
for EN1). (The -l value indicates the last grid point value, and so the two

together will indicate the whole range of a dimension.)

3.3.1 DESCRIP1 Case

The START and END fields in the DESCRIP1 record type indicate which

Level 2 dimensions the DESCRIP1 record applies to. Each data record

(Lew_l 2 dimension) may have a different number of Level 1 dimensions
contained within it. The DESCRIP1.GPTNUM field indicates the number

of grid points in that Level 1 dimension.

In the second part of Example 4 from Section 3.2.4, we specified two

separate descriptors for the pressure dimension. The first half of the year

had 18 pressure levels, and the second half of the year had a different set

of 15 pressure levels. Two DESCRIP1 records were used, then, to describe
the pressure dimension. The first record had START = 1 and END = 181

(for 1 January to 30 June); the second record had START = 182 and END
= 365 (for 1 July to 31 December).

Consider another example in a bit more detail. We have an array of

station identifiers which contain observations of surface temperatures with

time. Not all stations report every time observation; we store only those

that do. Suppose, for example, that we have observations for stations 1001,

1002, and 1003 on days 1 and 3, and stations 1001 and 1002 on day 2.

Assume that all of the temperatures for a particular time are to be written
in one record.

3.3. START AND END FIELDS 101

Temperature is a scalar, so there is a single Level 0 (limension with one

grid point. We consider the station identifier to be a Level 1 dimension.
Time is a Level 2 dimension, and there are 31 days of data.

The data are written ont in the order (station identifier, day). Because

tile station IDs change for each of tim three days (i.e., for each grid point

along the tinw dimension), three I)ES('.RII)I records will I)e needed.

The data dimension record fields will be as follows (indices start at 1):

OBJDESC.

DIMSPEC0.

DIMSPECI.

I)IMSPEC2.

DESCRIP0.

DESCRIP 1.

DESCVAL.

DESCRIP1.

NDIM0 = 1

NDIMI = 1

NDIM2 = 1

NDIM3 = 0

INDEX = -1

GPTNUM = 1
INDEX = 1

DESNUM = 3

INDEX = 2

GPTNUM = 3

I)ATFMT = singh" I)recision fioating-point

VARTYPE = surface temperature
UNITS = K

DEXSORT = l
NDEX = 1

RECSORT = 0

START = 1

END = l

GPTNUM = 3

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = station identifier

UNITS = no units

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0
DEXSORT = 1

NDEX = 1

RECSORT = 0

AVALS -- (1001, 1002, 1003)
DEXSORT = 65537

NDEX = 1

102CIIAPTER3. DISCU,SqlON AND EXAMPLES OF THE FORMAT

DESCVAL.

DESCRIPI.

DESCVAL.

DESCRIP2.

RECSORT = 1

START = 2

END = 2

GPTNUM = 2

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = station identifier

UNITS = no units

STORG = 0
DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 65537

NDEX = 1

RECSORT = 1

AVALS = (1001, 1002)
DEXSORT = 131073

NDEX = 1

RECSORT = 2

START = 3

END = 3

GPTNUM = 3

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = station identifier

UNITS = no units

STORG = 0

DLEVEL = 1

LEVEL = 1

DINDEX = 0

DEXSORT = 131073

NDEX = 1
RECSORT = 2

AVALS = (1001, 1002, 1003)
NDEN = 1
DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = time

UNITS = day

3.3. START AND END FIELDS 103

DESCVAL.

STORG = 1

DLEVEL = 2
LEVEL = 2

DINDEX = 0

DEXSORT = 1
NDEX = 1

RECSORT = 0

AVALS = (1, 1)

3.3.2 BADVAL Case

The BADVAL START and END fieldswillspecifywhich LevelI and Level2

dimensions a given BADVAL recordwillapply to. Again, therecan be no

overlapof the ranges specifiedby multipleBADVAL records;i.e.,therecan

only be one bad-data flag per data value.

In the previous example, we changed the number of station identifiers

in each record, depending on which stations had data available. Another

option would be to make a single Level 1 definition for the array of station

identifiers, giving it a fixed length of three, lit this case, we would mark
the data from Station 1003 on Day 2 with bad-data flag values. That is,

we would set the missing station's temperature to some flag value and set

the BADVAL.VALUE field to that same flag value. The START and END

fields have two elements each (one for the Level 1 dimension and one for

the Level 2 dimension); to make this BADVAL record apply over the entire
dataset, both START elements would be 0, and both END elements would

be -1. This is tile most straightforward and common use of the BADVAL

record type. The relevant record fields will be as follows (indices start at

0):

OBJDESC. NDIM0 = 1

NDIM1 = 1

NDIM2 = 1

NDIM3 = 0
NBADS = 1

DIMSPEC0. INDEX =-1

GPTNUM = 1

DIMSPEC1. INDEX = 0

DESNUM = 1

DIMSPEC2. INDEX = 1

GPTNUM = 3

DESCRIP0. DATFMT = single precision floating-point

VARTYPE = temperature

104CIIAI_TI",I? 3. DISCUSSION A NI) EXA MIlL I:S OF TIlE I:OI_ MAT

DESCRIPI.

1)ESCVAI,.

DESCRIP2.

DESCVAL.

BADVAL.

UNITS = K

DEXSORT = 0

NDEX = 0

RECSORT = 0

START = 0
ENI) = -1 or

GPTNUM = 3

DUPNUM = 0

DESSUP = 0

I)ESFMT = long integer
I)ESTYPE = station ident, ilier

UNII'S = no units

STORG = 0

DLEVEL = l

LEVEI, = I

I)IN1)EX : 0

DEXSORT = 0
NDEX = 0

RECSORT = 0

AVALS = (1001, 1002, 1003)
NDEX = 0

DUPNUM = 0

DESSUP = 0

DESFMT = long integer
DESTYPE = thne

UNITS = day
STORG = 1

DLEVEL = 2

LEVEL = 2

DINDEX = 0

DEXSORT = 0

NDEX = 0

RECSORT = 0

AVALS = (l, l)
RECSORT -- 0

START = (0, 0)

END = (-I,-I)

VALUE = bad-data flag

As another example, consider the case of the vector winds described

above in Example 2 in Section 3.2.2. In this case, a different bad-data flag

may be needed for each data component. The elements of the START and

3.:1. S'I'AIIT AND I.;NI) I"II:,LI)S 105

ENI) array will corr,.spond to tl,. longitu(h., latitude, pressure, and day-
obyear dimensions. The relevant record fiehls will I)c tile same as in that

example, with the addition of tile BADVAL record type as follows (indices
start, at 0):

OIIJ DES(!.

ilAI)VAI,.

NIIAI)S = 1

RE(/SORT = o

STA Rrr = (0, 0, 0, 0)

ENi) = (-I,-1,-i,-I)

VAI,UE = n bad-data [lag, v I_ad-dat, a Ilag, w bad-data
flag

The II)L code for writi;ig such a record might look something like this:

; set up the BADVAL record

RECTYPE = long(40)

; This is the first BADVAL record

RECSORT = long(1)

; This BADVAL record is valid over the entire range of
; Levels i-3 dimensions

START = long([O, O, O, 0])

ENDIT = long([-i, -I, -I, -I])

; Remember, VALUE must have as many components as the data

VALUE = float([-9999.0, -9999.0, -999.0])

writou,log_file_unit, RECTYPE,RECSORT, reserved $

, reserved, START, ENDIT, VALUE

Now cousider the possibility that after, say, nine days the bad-data flag

is changed, so that each pressure altitude has its own bad-data flag value.
This situation wouht need seven BAI)VAL records: the first would contain

the single bad data vah,e that applies to all of the pressure altitudes for

the first, nine (lays. Then a second BADVAL record would contain the flag
that applies to the first pressure altitude for the rest of the days. The

third through seventh records would give the flags that apply to the other
pressure levels after the ninth day.

The relevant record fiehls would now be as follows (indices start at 0):

OBJDESC. NBADS = 7

BADVAL. RECSORT = 0

STAaT = (0, 0, 0, 0)
END = (-1,-1,-1, 8)

106CIIAPTEI_ 3. DIS'CUS'SION AND EXAMPLES' 0/: TIlE FORMAT

VAI, UE= first bad data value

BADVAL. RECSORT = 1

START = (0, 0, 0, 9)

END = (-1,-l, 0,-1)
VALUE= second t)ad

BAI)VAI,. I{I,;CSOI_T = 2

START = (0, 0, 1, 9)

END = (-1,-1, 1,-1)
VALUE= second bad

BAI)VAI,. RECSORT = 3

S'FART = (0, 0, 2, 9)

END = (-1,-1, 2,-1)
VALUE= second bad

BADVAL. RECSORT = 4

START = (0, 0, 3, 9)

END = (-1,-1, 3,-1)
VALUE= second bad

BA I)VAL. RECSOffI' = 5

START -- (0, 0, 4, 9)

EN1) = (-1,-1, 4,-1)

BADVAL.

data value at pressnre level 0

data value at pressure lewd 1

data value at pressure level 2

data value at pressure level 3

VALUE = second bad data value at pressure level 4
RECSORT = 6

START = (0, 0, 5, 9)

END = (-1,-1, 5,-1)
VALUE = second bad data value at pressure level 5

3.3.3 DESCRIP3, PROCSPEC, PROCDUP,

AUXSPEC, and PAKSPEC Cases

These record types use the START and END fields in the same manner, so

they are dealt with together here. The only exception is that the fields in the
DESCRIP3 records for the same Level 3 dimension must not overlap, while

there can be any overlap in the PROCSPEC, PROCDUP, AUXSPEC, and

PAKSPEC record types.
We will consider again the wind vector example from Example 2 in

Section 3.2.2. As described, the START and END fields of the DESCRIP3
record extend over all dimensions of the data object. This is the most

straightforward use of these fields.
Now suppose that we process the Northern Hemisphere differently from

the Southern Hemisphere, and furthermore, we change the southern hemi-

sphere processing from day 20 onwards. These three types of processing

would be compactly represented as locally defined integer codes, which we

3.3. START AND END FIELDS 107

denote as "codenh," "codeshl," and "codesh2." We would need, then, three

PROCSPEC records to define these processing codes. Note that the data

at the equator, because they may be considered to belong to both hemi-

spheres, will be associated with two processing codes: one for the northern

hemisphere and one for the southern. The elements of the START and

END arrays will correspond to the wind COmlmnent., longitude, latitude,

pressure, and day-of-year dimensions. The relevant record fields will con-

tain the following (indices start at 1):

OBJDESC.

PROCSPEC.

PROCFORM.

PROCVAL.

PROCSPEC.

PROCFORM.

PROCVAL.

PROCSPEC.

PROCFORM.

PROCVAL.

NPROCS = 3

RECSORT = i

START = (1, 1, 46, 1, 1)

END = (-1,-1, 91,-1,-1)
CODE = codenh
PRCNUM = 1

NDUPS = 0

RECSORT = 1

PRCFMT = long integer
RECSORT = 1

INFO = codenh information

RECSORT = 2

START = (1, 1, 1, 1, 1)

END = (-1,-1, 46,-1, 19)
CODE = codeshl

PRCNUM = 1

NDUPS = 0

RECSORT = 2

PRCFMT = long integer
RECSORT = 2

INFO = codeshl information

RECSORT = 3

START = (1, 1, 1, 1, 20)

END = (-1,-1, 46,-1,-1)
CODE = codesh2

PRCNUM = 1
NDUPS = 0

RECSORT = 3

PRCFMT = long integer

RECSORT = 3

INFO = codesh2 information

108CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

3.4 Audit Trail

We will consider an example where there are three sites, numbered 501,502,

and 503. On 20 January 1989 at Site 501, a program with a Task number

1234 generates a data set which is then reprocessed by Task 2452 on 6

October 1990. Meanwhile, at Site 502, a Task number 1234 (which ahnosl

certainly denotes a different task than Site 501's Task 1234) also generates

a data.set on 7 October 1990. Finally, Site 503 receives the datasets from

Site 501 and Site 502 and uses Task number 8364 to incorporate these data

into calculations that produce a new dataset on 15 July 1991. We will

trace through these datasets using the notation (site code, task code, date,

pointer).
The first data sets created at Site 501 and Site 502 had no previous

history and therefore contain one node which contains information about
the current dataset. The AUDIT.TREE field will contain:

Site 1, dataset 1: (501, 1234, 32528, 0)

Site 2, dataset 1: (502, 1234, 33153, 0)

Note that the 20 January 1989 is 32,528 days after 31 December 1899,

while 33,153 days after is 7 October 1990. Also, the pointer fields are set
to 0 to indicate that there are no further nodes in the tree.

When Site 501 reprocesses its first dataset, the current audit node will

be appended to the audit node from that dataset, and the first audit node

will change its pointer from 0 to 1. The new AUDIT.TREE field will
contain:

Site 1, dataset:2 (501, 1234, 32528, 1) (501, 2542, 33152, 0)

Finally, when Site 3 takes these two data.sets and creates another one,
the two AUDIT.TREE nodes from the two datasets are concatenated with

a new node for the generated dataset. The NULL pointers will change to

point to the newly added node. The final AUDIT.TREE field will contain:

(501, 1234, 32528, I)

(501, 2542, 33152, 2)

(5032, 1234, 33153, I)

(503, 8364, 33434, 0)

We can define an algorithm to create new nodes and append them to
other nodes as follows:

I. For NUM = the number of component data.sets used in creating the
current dataset

3.5. AUXILIARY INFORMATION 109

N(i) = the number of nodes in the i component data set's

audit tree (i = 1,NUM)

2. If NUM = 0 then skip to step 6

3. For every i, where i = 1,NUM do steps 4 and 5

4. Set NODE(N(i)).POINTER = sum(N(j))+ 1), where j = i+ I,NUM

5. Append NODE to the new AUDIT.TREE field

6. Create a new node, NN:

NN.SITE = site code

NN.TASK = task code

NN.DATE = date (days since 1 Jan 1900)

NN.POINTER = NIL (0)

7. Append NN to the new AUDIT.TREE field

3.5 Auxiliary Information

Following are examples of specifications for auxiliary information. All of

the examples will be based on the wind vector example from Section 3.2.2.

3.5.1 Example 1. Referring to a Single Dimension, Ap-

plied to a Single Dimension

Consider that the pressure levels in the wind vector example have measured

uncertainties of [1000 4- 7,850 4- 5,700 4- 5,500 -4-2,250 4- 1,100 4- limb for
all wind components, horizontal locations, and times. If the indices start

numbering from 0, then we have the following auxiliary record fields:

OBJDESC. NAUX = 1

AUXSPEC. RECSORT = 0
NUMREF = 1 •

NUMAPP = 1

START = (0, 0, 0, 0, 0)

END = (-1,-1,-1,-1,-1)

AUXFMT = single precision floating-point

AUXTYPE = measured uncertainty
UNITS = mb

NUMSUP = 0

AUXRANGE. RECSORT = 0

110CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

)

7_

AUXVAL.

REFLEV = 1

REFNDEX = 2

APPLEV = 1

APPNDEX = 2

RECSORT = 0

AVALS = (7.,5.,5.,2.,1.,1.)

In IDL, then, code to define the auxiliary information for this data

object would look like this (using the basic structure as already given in

Section 3.2.2):

; set up the relevant elements in the OBJDESC record

RECTYPE = long(l)

NDINO = long(1)

NDIM1 = long(2)

NDIM2 = long(2)

NDIH3 = long(O)

NAUX = long(l)

writeu,log_file_unit, RECTYPE, vartype, reserved $

, NDIMO, NDIM1, NDIM2, NDIM3, reserved, isource $

, reserved, reserved, naudit, ninfo, ncomms, comcod $

, reserved, nbads, reserved, nprocs, reserved, npacks $

, reserved, NAUX, cmpnum, reserved, reserved, reserved

; set up the dimensional information, bad data values,

; packing information, and processing information

; set up the relevant elements for the AUXSPEC record

RECTYPE = long(80)

; only one record group

RECSORT = long(O)

; there is only one dimension .ith uncertainties:

; pressure

NUMREF = long(1)

; the uncertainties vary only .ith pressure, therefore,

3.5. AUXILL4RY INFORMATION 111

; AUXVAL.AVALS has one dimension

NUMAPP = long(l)

; this covers the entire range of the data

START = long([0, O, O, O, O])

ENDIT = long([-1, -1, -1, -1, -1])

; the uncertainties are floating-point numbers

AUXFMT = Iong(67108864)

; the quantities are measured uncertainties

AUXTYPE = long(262144)

; the units are in millibars

UNITS = long(1081593921)

; there are no supplemental values

NUMSUP = long(O)

write,log_file_unit, RECTYPE, RECSORT, NUMREF, NUMAPP $

, START, ENDIT, AUXFMT, AUXTYPE, UNITS, NUMSUP $

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; only one record group

RECSORT = long(O)

; the uncertainties refer to pressure (the third index

; in the Level I dimensions)

REFLEV = long(l)

REFNDEX = long(2)

; the uncertainties only vary over pressure (the

; third index in the Level I dimensions)

APPLEV = long(1)

APPNDEX = long(2)

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFNDEX $

, APPLEV, APPNDEX, reserved, reserved

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; only one record group

RECSORT = long(O)

AVALS = (7., 5., 5., 2., 1., 1.)

write,log_file_unit, RECTYPE, RECSORT, AVALS

112CtfAPTER 3. DISCUSSION AND EXAMPLES OF TIlE FORMAT

3.5.2 Example 2. Referring to a Single Dimension, Ap-

plied to Multiple Dimensions

Reconsider the previous example, where the measured uncertainties in the

pressure levels now vary over spatial location and time, but are the same

for each wind component. Tile uncertainties are specified in an array, U,

with the dimensions of 6 x 91 x 72 x 31 (i.e., pressure, latitude, longitude,

day of month). If the indices start numbering from 0, then we have the

following auxiliary record fields:

OBJDESC. NAUX = 1

AUXSPEC. RECSORT = 0

NUMREF = 1

NUMAPP = 4

START = (0, 0, 0, 0, 0)

END = (-1,-l,-l,-l,-l)
AUXFMT = single precision floating-point

AUXTYPE = measured uncertainty
UNITS = mb

NUMSUP = 0

AUXRANGE. RECSORT = 0

REFLEV = l

REFNDEX = 2

APPLEV = (1, 1, 1, 2)

APPNDEX = (3, 2, 1, 0)
AUXVAL. RECSORT = 0

AVALS = U(6, 91, 72, 31)

3.5.3 Example 3. Referring to a Single Dimension, Ap-

plied to Multiple Dimensions and Subsections of

the Data

Reconsider the previous examples, where now there are different measured
uncertainties in the pressure at each pressure level. The uncertainties are

different for each day in the first 20 days and then are the same each

day for the last 11 days. There are also measured uncertainties in the

vertical component of the wind vector that vary over latitude, longitudes,

and pressure levels, but are the same for each day.

The uncertainties in the pressures for the first 20 days are specified in an

array, U1, with the dimensions of 6 x 20 (i.e., pressure, day of month). The

uncertainties in the pressures for the last 11 days are specified in an array,

U2, containing 6 values (uncertainties over pressure). The uncertainties in

3.5. AUXILL4RY LYFORMATION 113

the vertical wind field are specified in an array, U3, with the dimensions of

6 x 91 × 72 (i.e., pressure, latitude, longitude). If the indices start numbering

from O, then we have the following auxiliary record fields:

OBJDESC.

AUXSPEC.

AUXRANGE.

AUXVAL.

AUXSPEC.

AUXRANGE.

AUXVAL.

AUXSPEC.

NAUX = 3

RECSORT = 0

NUMREF = 1

NUMAPP = 2

START --- (0, 0, 0, 0, 0)

END = (-1,-1,-1,-1, 19)
AUXFMT = single precision floating-point

AUXTYPE = measured uncertainty

UNITS =mb

NUMSUP = 0
RECSORT = 0

REFLEV = 1

REFNDEX = 2

APPLEV = (1, 2)

APPNDEX = (2, 0)
RECSORT = 0

AVALS - Ul(6, 20)
RECSORT = 10

NUMREF = 1

NUMAPP = 1

START = (0, 0, 0, 0, 20)

END = (-1,-1,-1,-1,-1)

AUXFMT = single precision floating-point
AUXTYPE = measured uncertainty
UNITS = mb

NUMSUP = 0

RECSORT = 10

REFLEV = 1

REFNDEX = 2

APPLEV = 1

APPNDEX = 2

RECSORT = i0

AVALS = U2(6)
RECSORT = 20

NUMREF = 1

NUMAPP = 3

START = (2, 0, 0, 0, 0)

END = (2,-1,-1,-1,-1)

ll4CIIAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

AUXRANGE.

AUXVAL.

AUXFMT = single precision floating-point

AUXTYPE = measured uncertainty

UNITS = cm/s

NUMSUP = 0

RECSORT = 20

REFLEV -- 0

REFNDEX = 2

APPLEV = (1, 1, 1)

APPNDEX = (2, 1, 0)

RECSORT = 20

AVALS = U3(6, 91, 72)

In IDL, then, code to define the auxiliary information for this data

object would look like this (using the basic structure as already given in

Section 3.2.2):

; set up the relevant elements in the OBJDESC record

RECTYPE = long(1)

NDIMO = long(l)

NDIMI = long(2)

NDIM2 = long(2)

NDIM3 = long(O)

NAUX = long(3)

writeu,log_file_unit, RECTYPE, vartype, reserved $

, NDIMO, NDIMI, NDIM2, NDIM3, reserved, isource $

, reserved, reserved, naudit, ninfo, ncomms, comcod $

, reserved, nbads, reserved, nprocs, reserved, npacks $

, reserved, NAUX, cmpnum, reserved, reserved, reserved

; set up the dimensional information, bad data values,

; packing information, and processing information

; set up the relevant elements for the first AUXSPEC

; record: pressure uncertainties for the first 20 days

RECTYPE = long(80)

3.5. A UXILIARY INFORMATION 115

; first of three record groups

RECSORT = long(O)

; there is only one dimension with uncertainties:

; pressure

NUMREF = long(1)

; the uncertainties vary with pressure and time,

; therefore, AUXVAL.AVALS has two dimensions

NUMAPP = long(2)

; this covers the entire spatial range of the data and all

; of the data components for the first 20 days

START = long([0, O, O, O, O])

ENDIT = long([-1, -I, -I, -I, 19])

; the uncertainties are floating-point numbers

AUXFNT = Iong(67108864)

; the quantities are measured uncertainties

AUXTYPE = Iong(262144)

; the units are in millibars

UNITS = long(1081593921)

; there are no supplemental values

NUMSUP = long(O)

write,log_file_unit, RECTYPE, RECSORT, NUMREF, NUMAPP $

, START, ENDIT, AUXFMT, AUXTYPE, UNITS, NUMSUP S

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; first of three record groups

RECSORT = long(O)

; the uncertainties refer to pressure (the third index

; in the Level I dimensions

REFLEV = long(1)

REFNDEX = long(2)

; the uncertainties vary over pressure (the third index

; in the Level i dimensions) and time (the first index

; in the Level 2 dimensions)

APPLEV = long([1, 2])

APPNDEX = long([2, O])

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFNDEX $

, APPLEV, APPNDEX, reserved, reserved

116 CHAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; first of three record groups

RECSORT = long(O)

AVALS = U1

write,log_file_unit, RECTYPE, RECSORT, AVALS

; set up the relevant elements for the second AUXSPEC

; record: pressure uncertainties for the last 11 days

RECTYPE = long(80)

; second of three record groups

RECSORT = long(lO)

; there is only one dimension with uncertainties:

; pressure

NUNREF = long(l)

; the uncertainties vary only with pressure, therefore,

; AUXVAL.AVALS has one dimension

NUMAPP = long(l)

; this covers the entire spatial range of the data and all

; of the data components for the last II days

START = long([0, O, O, O, 20])

ENDIT = long([-I, -I, -I, -I, -I])

; the uncertainties are floating-point numbers

AUXFNT = Iong(67108864)

; the quantities are measured uncertainties

AUXTYPE = long(262144)

; the units are in millibars

UNITS = long(I081593921)

; there are no supplemental values

NUMSUP = long(O)

write,log_file_unit, RECTYPE, RECSORT, NUNREF, NUMAPP $

, START, ENDIT, AUXFNT, AUXTYPE, UNITS, NUNSUP $

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; second of three record groups

RECSORT = long(lO)

; the uncertainties refer to pressure (the third

L_

-ZZ

3.5. AUXILL4RY INFORMATION 117

; the third index in the Level l dimensions

REFLEV = long(l)

REFNDEX = long(2)

; the uncertainties vary over pressure (the third index

; in the Level l dimensions)

APPLEV = long(1)

APPNDEX = long(2)

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFNDEX $

, APPLEV, APPNDEX, reserved, reserved

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; second of three record groups

RECSORT = long(lO)

AVALS = U2

write,log_file_unit, RECTYPE, RECSORT, AVALS

; set up the relevant elements for the third AUXSPEC

; record: vertical wind uncertainties

RECTYPE = long(80)

; third of three record groups

RECSORT = long(20)

; there is only one dimension with uncertainties:

; vertical wind component

NUNREF = long(1)

; the uncertainties vary with pressure, latitude, and

; longitude, therefore, AUXVAL.AVALS has three dimensions

NUMAPP = long(3)

; this covers the entire spatial range of the data and all

; days for the vertical wind component

START = long([2, O, O, O, O])

ENDIT = long([2, -I, -I, -l, -I])

; the uncertainties are floating-point numbers

AUXFMT = iong(67108864)

; the quantities are measured uncertainties

AUXTYPE = Iong(262144)

; the units are in cm/s

UNITS = Iong(1616347137)

; there are no supplemental values

WUMSUP = long(O)

I18CtlAPTER 3. DISCUSSION AND EXAMPLES OF THE FORMAT

write,log_file_unit, RECTYPE, RECSORT, NUMREF, NUMAPP $
, START, ENDIT, AUXFMT, AUXTYPE, UWITS, NUMSUP $

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; third of three record groups

RECSORT = long(20)

; the uncertainties refer to vertical wind, which is

; the third index in the Level 0 dimensions

REFLEV = long(O)

REFNDEX = long(2)
; the uncertainties vary over pressure (the third index

; in the Level 1 dimensions), latitude (the second index

; in the Level 1 dimensions), and longitude (the first

; index in the Level i dimensions)

APPLEV = long([1, 1, 1])

APPNDEX = long([2, 1, O])

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFNDEX $

, APPLEV, APPNDEX, reserved, reserved

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; third of three record groups

RECSOET = long(20)

AVALS = U3

write,log_file_unit, RECTYPE, RECSORT, AVALS

3.5.4 Example 4. Referring to Multiple Dimensions,

Applied to Multiple Dimensions and Subsections
of the Data

Again, consider the previous examples, where now there are different mea-
sured uncertainties associated with the longitudes and latitudes, where the

uncertainties vary over each longitude band in the southern hemisphere

(including the equator). In the northern hemisphere, the measured uncer-

tainties vary with each longitude-latitude grid point.
The uncertainties in the southern hemisphere are specified in an array,

U1, containing 72 values (uncertainties over longitude). The uncertainties

3.5. AUXILIAR'F INFORMATION 119

in tile northern hemisphere are specified in an array, U2, with the dinaen-

sions of 45 × 72 (i.e., latitude, longitude). If the indices start numbering

from 0, then we have the following auxiliary record fields:

OBJDESC. NAUX = 2

AUXSPEC. RECSORT = 0

NUMREF = 2

NUMAPP = 1

START = (0, 0, 0, 0, 0)

END = (-1,-1, 45,-I, 0)

AUXFMT = single precision floating-point

AUXTYPE = measured uncertainty
UNITS = deg
NUMSUP = 0

AUXRANGE. RECSORT = 0

REFLEV = (1, l)

REFNDEX = (0, 1)
APPLEV = 1
APPNDEX = 0

AUXVAL. RECSORT = 0

AVALS = U1(72)
AUXSPEC. RECSORT = 10

NUMREF = 2

NUMAPP = 2

START = (0, 0, 46, 0, 0)

END = (-1,-1,-1,-1,-1)

AUXFMT = single precision floating-point
AUXTYPE = uncertainty

UNITS = deg
NUMSUP = 0

AUXRANGE. RECSORT = 10

REFLEV = (1, 1)

REFNDEX = (0, 1)

APPLEV = (1, 1)

APPNDEX = (1, 0)
AUXVAL. RECSORT = 10

AVALS = U2(45,72)

In IDL, then, code to define the auxiliary information for this data

object would look like this (using the basic structure as already given in
Section 3.2.2):

; set up the relevant elements in the OBJDESC record

120C'HAPTER 3. DISCUSSION AND EXAMPLE.C; OF THE FORMAT

RECTYPE = long(1)

IIDIMO = long(1)

IDIMI = long(2)

IDIM2 = long(2)

_DIM3 = long(O)

NAUX = long(2)

writeu,log_file_unit, RECTYPE, vartype, reserved $

, NDIMO, NDIM1, NDIM2, NDIH3, reserved, isource $

, reserved, reserved, naudit, ninfo, nco_ms, comcod $

, reserved, nbads, reserved, nprocs, reserved, npacks $

, reserved, IAUX, cmpnum, reserved, reserved, reserved

; set up the dimensional information, bad data values,

; packing information, and processing information

; set up the relevant elements for the first AUXSPEC

; record: longitude and latitude uncertainties in the

; southern hemisphere

RECTYPE = long(80)

; first of two record groups

RECSORT = long(O)

; there are tw6 dimensions with uncertainties

IUMREF = long(2)

; the tmcertainties vary with longitude, therefore,

; AUXVAL.AVALS has one dimension

NUMAPP = long(l)

; this covers the entire southern hemisphere

START = long([0, O, O, O, O])

E_DIT = long([-1, -I, 45, -I, -I])

; the uncertainties are floating-point numbers

AUXFMT = long(67108864)

; the quantities are measured uncertainties

AUXTYPE = long(262144)

; the units are in degrees

3.5. AUXILL4RY INFORMATION

UNITS = Iong(1745879298)

; there are no supplemental values

NUNSUP = long(O)

write,log_file_unit, RECTYPE, RECSORT, NUNREF, NUNAPP $

, START, ENDIT, AUXFMT, AUXTYPE, UNITS, NUMSUP $

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; first of two record groups

RECSORT = long(O)

; the uncertainties refer to longitude (the first index

; in the Level I dimensions) and latitude (the second

; index in the Level I dimensions)

REFLEV = long([I, I])

REFNDEX = long([0, I])

; the uncertainties vary over longitude (the first index

; in the Level I dimensions)

APPLEV = long(1)

APPNDEX = long(O)

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFWDEX $

, APPLEV, APPIDEX, reserved, reserved

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; first of two record groups

RECSORT = long(O)

AVALS = UI

write,log_file_unit, RECTYPE, RECSORT, AVALS

; set up the relevant elements for the second AUXSPEC

; record: longitude and latitude uncertainties in the

; northern hemisphere

RECTYPE = long(80)

; second of two record groups

RECSORT = long(lO)

; there are two dimensions vith uncertainties

IUMREF = long(2)

121

122CHAPTER3. DISCUSSION AND EXAMPI.ES OF THE FORMAT

z

; the uncertainties vary with longitude and latitude,

; therefore, AUXVAL.AVALS has two dimensions

NUMAPP = long(2)

; this covers the entire northern hemisphere

START = long([0, O, 46, O, O])

ENDIT = lonE([-I, -I, -I, -1, -13)

; the uncertainties are floating-point numbers

AUXFMT = Iong(67108864)

; the quantities are measured uncertainties

AUXTYPE = Iong(262144)

; the units are in degrees

UHITS = Iong(1745879298)

; there are no supplemental values

NUMSUP = long(O)

write,log_file_unit, RECTYPE, RECSORT, NUMREF, NUMAPP $

, START, ENDIT, AUXFMT, AUXTYPE, UNITS, _IUMSUP $

, reserved, reserved

; set up the indices in the AUXRANGE record

RECTYPE = long(81)

; second of tvo record groups

RECSORT = long(t0)

; the uncertainties refer to longitude (the first index

; in the Level I dimensions) and latitude (the second

; index in the Level I dimensions)

REFLEV = long(l, 1)

REFNDEX = long(O, 1)

; the uncertainties vary over latitude (the second index

; in the Level 1 dimensions) and longitude (the first

; index in the Level I dimensions)

APPLEV = long([I, I])

APPNDEX = long([1, O])

write,log_file_unit, RECTYPE, RECSORT, REFLEV, REFNDEX $

, APPLEV, APPNDEX, reserved, reserved

; set up the auxiliary information in the AUXVAL record

RECTYPE = long(82)

; second of two record groups

RECSORT = long(lO)

AVALS = U2

write,log_file_unit, RECTYPE, RECSORT, AVALS

Chapter 4

Pros and Cons

4.1 How Well Did We Meet Our Design

Goals?

As described in Chapter I, using a standard format has certain advantages
and disadvantages.

The proposed format addresses the advantages in these ways:

Portability When written using XDR binary representations, a df dataset
is completely portable across an electronic network. When using a

native binary format instead, the TEST record at the beginning of

the dataset tells just how the data were written, which is the first and

most important step in converting it to be read on a different machine.
(In fact, it is possible in principle to write generic programs to do the

conversion automatically.) Furthermore, necessary metadata, such

as dimensional information and identification of physical quantities

and units, are written to the datasets as coded numbers, making the

datasets portable across human languages as well.

Understandability All the information needed to accompany the data,

such as descriptions of its dimensions, its "family history," special

processing notes, and any sorts of genera] comments, have a specified

place within each df dataset. Thus, the metadata are straightforward

to find and interpret,

Reusability Because the df format is flexible and adaptable to a wide

variety of needs, one avoids having to use dozens of different formats,

all radically different. And while the absence of a software library of

123

124 CIL4PTER 4. PROS AND CONS

general df I/O subroutines hinders reusability of software at present,

in the long term this difficulty should go away as such libraries are

developed.

The df format also minimizes the disadvantages of standard formats:

Inflexibility Tile df format is quite flexible in being able to store many

different kinds and forms of physical science data in whatever order or

numeric representation the user desires, with processing descriptions

and flags specifiable over any arbitrary subset of the data. While its

most obvious application is in storing nmlfidimensional rectangular

gridded data fields, it can also store non-uniform grids, scattered point

data, and other data objects. With the use of supplemental dimen-

sional information, one should be able to store even non-rectangular

collections of node-like data, such as trees or directed graphs (the
DESCSUP record could hold tile connectivity information).

Overhead Tile df format provides the user with tile ability to choose how

much overhead is involved in reading tile dataset. That is, aside from

a few records at tire beginning of a data object, tile amount of storage

space required for a data set can be determined by the user, who can

choose the numeric type used to store the data, as well as whether any

packing or compression schemes are applied to the data. In addition,
the user may choose which binary number representation is to be

used, whether the portable XDR or the faster native binary formats.

Complexity In this item, the df format is clearly lacking. For a simple,

straightforward data array, a df dataset can be fairly simple. The full

format specification, however, is complicated and relies on concepts

(such as mapping of dimension indices to data array indices) which

many scientists will find hard to follow. The situation could be im-

proved by the development of a standard library of subroutines to
read and write the format.

Accessibility Instead of depending on a support group to develop all the
software needed to use the df format, the user has the format spec-

ification itself and is thus free to implement it on any platform and

any language desired. While this does not eliminate the need for a

library of ready-to-use software, it does free the user from dependence
on such software's existence.

Conformance It is possible to write a program which can scan a dataset
and ensure that it does indeed conform to the standard.

4.2. QUESTIONS AND ANSWERS 125

4.2 Questions and Answers

Despite all its features, the df format does have some deficiencies. Some of

these are justifiable (for the moment), some can be worked around (albeit
awkwardly), and some must wait future enhancements of the format.

Why was this format created? It this really supposed to go
into competition against the likes of HDF and netCDF?

No. In fact, the authors dream not of the day when the df format

overwhelms all others, but of the day when the features they need--and

which the df format at present alone supplies--show up in other, more
widely accepted data formats.

Until that day comes, however, our research needs dictated a solution

that could be used in the present, and so the authors had no choice but to

design a new format. Taking a broader view, one can almost say that the

df format was created as a means of demonstrating what we meant, and
why the features we say we need are indeed important.

The df format specification is too complicated. As a scientist,
I want something I can implement in BASIC in five minutes.

The format could have been made simpler, but only at tile expense of

making it more restrictive. The apparent complexity here is a result of being

able to express complicated, pathological data structures; you can do things

here you cannot do elsewhere. (If anything, df falls short of being able to
represent every conceivable complicated data structure.) The moment we

rule out such data structures, telling scientists they cannot write or think
of their data in those terms, we lose.

In the short term, the complexity will frighten away some potential

users. But in the long term, as a standard library of subroutines to handle
the df format takes shape, the complexity will be hidden from the naive

users, and they need never see this document. (The more advanced users,

of course, will always be able to write their own software to improve per-
formance in their individual environments.)

For now, the only consolation is to realize that for most cases, the spec-

ification is simpler than it appears. Simple cases can be simply expressed.

The dimensional indices, for example, can be as straightforward or a twisted
as the user cares to make them.

And, yes, a df format file can be written from a BASIC program!
It seems that a key feature of the df format is the use of nu-

meric codes to represent metadata. This scheme, however, is not

only overly restrictive on users creating their own data, but it
relies on being able to distribute the definitions of these codes to

all users of the format. And that seems unlikely to be successful.

Numeric codes are used instead of text strings for three reasons: (a)

126 CHAPTER 4. PROS AND CONS

Z

to save storage space (this means that we can require that metadata be

present in each data.set, even in a massive collection of files), (b) to promote

automated handling of the metadata (interpretation, labelling, cataloging,

etc.), and (c) to reduce the ambiguity and language problems associated

with the use of English text.

The codes, though, do necessitate implementing a mechanism for trans-

lating them (see Section B.2) as well as following the hierarchical scheme

for adding new codes to the standard. Current technology is capable of

supporting the distribution of the code definitions, whether it be through

copying files or through the use of a distributed network server.

If a few small datasets are to be exported to another site, and there is
some concern about whether that site is able to translate the codes, then we
recommend that the code translations used in those datasets be inserted as

COMMENT records into at least the first one. If large numbers of data.sets

are to be shipped, then it would probably be worthwhile to arrange for

distribution of the complete set of code translations.

Note that the capability exists to define certain codes locally. One does

not have to wait to write one's datasets until a central authority assigns a

code; moreover, codes defined locally according to the standard are struc-
tured in such a way that they will not conflict with other sites" local codes.

The only code that must be assigned centrally is the site identification code.

It should also be noted that, with the exception of the data format codes,

translations are not necessary to read the data or determine its structure,

but are merely an aid to interpreting it. If one knows, for instance, that

a file contains temperature on latitude-longitude-pressure grids, then one

need not rely on the codes to say so. Even the data format codes, in fact,
are structured in such a way that a program should be able to parse an

unknown code and figure out what data types are intended in most cases,

without having access to a list of data format code translations.

The header records require the user to know what will be
written before the data are written: the data sizes, the number of

comments, the number and type of processing codes, etc. What if

we want to write the data first, then figure out what the metadata
are?

This is an unavoidable side effect of the requirement that programs

written in languages such as Fortran know record lengths before the records

are read. This requires that records be written in a certain order.
In the long run, though, as these languages move out of use, and this

feature is less in demand, the requirement may be relaxed. In that case,

records may be written in any order (so long as the TEST record comes

first). At that time, it will be necessary to know the length of a data record
which occurs before the metadata, in order to skip past it to read the

4.2. QUESTIONS AND ANSWERS 127

metadata (which contains the information about how big tile data records

are); a new record type may then be created to give the length of the next
record in bytes.

Using the df format, I can lump scalar quantities together as

components of a single larger quantity. But I cannot do that with
vectors or tensors (much less mix scalars, vectors, and tensors)

without breaking them up into their components. I want to be
able to nest Level 0 dimensions.

At present, single datum's complexity is limited. While the convention

of the Level 0 dimensions provides for scalar, vectors, and tensor of arbitrary

sizes and types, it does not allow for components of different forms (such
as scalars and tensors) to be lumped together to form a single datum.

Currently, separate data objects must be defined within a single dataset--
a less than satisfactory solution.

What is needed is some completely general way of describing a single
datum of arbitrary complexity, this is an area for future expansion.

128 CHAPTER 4. PROS AND CONS

Appendix A

Numeric Codes

A.1 Centrally Defined Codes

This section describes the various metadata codes that are centrally defined.

These codes can be modified or added to only by the central administrative

site, Site 1. The information given by these encodings is generally necessary
to read the data, so these codes must be the same at all sites (with some

provision for locally defined quantity codes and units codes.)

A.1.1 Data Format Codes

The data format codes are used in

the OBJDESC.COMCOD, DESCRIP0.DATFMT, DESCRIP1.DESFMT,

DESCRIP2DESFMT, DESCRIP3.DESFMT, DESCRIP.DESFMT,

PROCFORM.PRCFMT, PAKSPEC.DPAKFMT, PAKFORM.PAKFMT,

and COMPFORM.COMPFMT record fields. These codes are integer val-

ues at least 32 bits long (because the codes are defined bit by bit, it is

irrelevant whether these integers are considered to be signed or unsigned).

The integer is expressed as a sequence of eight 4-bit nybbles, numbered

from 0 to 7, the most significant nybble in the integer being number 0.
The codes are structured in such a way that they can be interpreted by

inspecting a hexadecimal printout.

The nybble specifications are as follows (LSB = Least Significant Bit,

MSB = Most Significant Bit):

l b_eI typei I I I I _--]
0 l 2 3 4 5 6 7

129

i

130 APPENDIX A. NUMERIC CODES

0 : Numeric types

1 : logical or Boolean

E o 1, lsi____,ruelF_lseto I o I o I

size

true-value

false-value

0 : same size as short integer

1 : same size as long integer

0 : LSB is clear (0)

1 : LSB is set (1)

2: MSBisset (1)

3 : MSB is clear (0)
0 : LSB is clear (0)

1 : LSBisset (1)

2 : MSB is set (1)

3 : MSB is clear (0)

sign

2 . I sign I 0 _1

0 : unsigned

1 : signed

0 I 0 l 0%___

3 : integer

F-O I 3 [sig n I si_e 1 0 =l.

sign 0 : unsigned
1 : signed

size 0 : short

1 : long

o I o I o,1

4 : floating-point

_sizei 0 I 0 I O
size 0 : single precision

1 : double precision

2 : extended precision

3 : super-extended precision

10101

Z

A.I. CENTRALLY DEFINED CODES

5 : complex floating-point

0 5 size 0 0 0 O _____ 0 l

size 0 : single precision
1: double precision

2 : extended precision

3 : super-extended precision

131

1 : Character types

Note that tile string lengths given below include only the characters in

the string proper, not inchtding any header or trailer bytes.

0 : XDR string

maxinuun string length]

1 : fixed-length sequence of characters with no string length

length of array or string]

2 : sequence of characters preceded by string length

nlaximmn string length

3 : sequence of characters followed by a null character

maximum string length

4 : XDR counted string (IDL extension)

maximum string length

2 : Structure types

code

comp
code

number of components in the structure

unique code to identify the structure

132 APPENDIX A, NUMERIC CODES

0 : a pair of bytes in (MSB, LSB) order which comprise

a short integer

1 : a quadruplet of long integers (used as nodes for

AUDIT.TREE)

The following are common examples of the data format codes:

Itex Decimal

01010000 16842752

02000000 33554432

02100000 34603008

03000000 50331648

03100000 51380224

03010000 50397184

03110000 51445760

04000000 67108864

04100000 68157440

04200000 69206016

05000000 83886080

05100000 84934656

05200000 85983232

05300000 87031808

10000001 268435457

10000050 268435536

11000001 285212673

11000050 285212752

13000050 318767184

20200000 538968064

20300100 540016896

logical with length of short integer (IDL logicals)

true = 1, false = 0

unsigned byte

signed byte

unsigned short integer

signed short integer

unsigned long integer

signed long integer

single precision floating-point

double precision floating-point

extended precision floating-point

single precision complex

double precision complex

extended precision complex

super-extended precision complex

XDR string, a maximum of one character long

XDR string, a maximum of 80 characters long

fixed-length string of 1 character

fixed-length string of 80 characters

Null-terminates string; max length is 80 charac-

ters

short integer (signed) from a 2-byte base

(MSB,LSB)

four unsigned long integers (used as nodes in the

AUDIT.TREE structure)

A.I. CENTRALLY DEFINED CODES 133

A.1.2 Site Identifier Codes

It is anticipated that most sites using the df format will need to define and
use their own local conventions for the integer codes used to indicate task

IDs, special processing conditions, and data sources. Such local definitions

can be managed and prevented from interfering with one another (when

importing data sets from another site, for instance) by keying them to a

unique site ID.

These site identifiers are long integer codes signifying where a dataset

was created. To avoid duplication of codes, all site IDs are currently regis-
tered with the central administrative site, Site 1. Sites that are not regis-

tered with the main authority may use site ID 0, but their local conventions

are virtually guaranteed to conflict with others'. Use of site ID 0, then, is

strongly discouraged. (Note that site IDs are needed only by sites which

generate datasets; one can certainly read datasets generated by others with-

out having to acquire a site ID first.)
Site 1 is the site where this format originated: the Atmospheric Chem-

istry and Dynamics Branch (Mail Code 916) at the National Aeronautics
and Space Administration's Goddard Space Flight Center, of the the United

States Government. Site 1 will be the source of other site registrations and

the source of updates and changes to the format. The current mailing
address is:

Dr. Paul Newman

Code 916

NASA/GSFC
Greenbelt MD 20711

USA

email to: df@ertel.gsfc.nasa.gov

In addition to its use in separating local conventions, the site identifier

code is also used in the audit tree of each dataset, specifying from where

each data set referenced in the tree originates

Each code is an unsigned integer at least 28 bits long. The bits are
numbered from 0 to 27, starting with the least significant bit. Bits 26 and

27 define an index of site types; the format of the rest of the integer code

depends on the site type.

The bit format of the site ID codes is as follows:

[0 typ I]
28 26 0

134 APPENDIX A. NUMERIC CODES

typ (bits 26 and 27, values 0 to 3) type of site

0 : government
1 : university

2 : private industry
3 : other

0 : Government

28 26

 o,,otr l ge°c,rllocatioo[groupI
18 13 8 0

country
unit

location

group

(bits 18 to 25, values 0 to 255) country of site
(bits 13 to 17, values 0 to 31) government agency

(bits 8 to 12, values 0 to 31) location of site

(bits 0 to 7, values 0 to 255) group within site

1 : Universities

28 26

name location I group]
12 8 0

name
location

group

(bits 12 to 25, values 0 to 16383) university name

(bits 8 to 11, values 0 to 15) campus location

(bits 0 to 7, values 0 to 255) group on campus

2 : Private Industry

28 26

name location I group I
12 8 o

name
location

group

(bits 12 to 25, values 0 to 16383) company name

(bits 8 to 11, values 0 to 15) site location

(bits 0 to 7, values 0 to 255) group on-site

A few examples follow:

O:

1:

65536:

Unknown

U.S. NASA GSFC Chemistry and Dynamics Branch

U.S. NOAA NMC

•4.1. CENTRALLY DEFINED CODES 135

A.1.3 Quantity Codes

The quantity codes are used in the OBJ DESC.VARTYPE,

DESCRIP0.VARTYPE, DESCRIPt.DESTYPE, DESCRIP2DESTYPE,

DESCR|P3.DESTYPE, and DESCRIP.DESTYPE record fields to describe

what physical quantity the data or its dimensions represent. Each code is

stored in an integer at least 32 bits long. This integer is expressed az a
sequence of eight 4-bit nybbles, numbered from 0 to 7, the most significant

nybble in the integer being number 0.

The quantity code format is az follows:

I gronp I I I I I I I
0 1 2 3 4 5 6 7

group is a broad collection of quantities that have some rela-

tionship to a particular discipline
00: General

01-0F : Geophysical
10-IF : C_hemical

20-2F : Astronomical

77 : Site-defined quantities (explained in Sec-

tion A.2.4)

General group

[00 I category I type 1 code I

Atmospheric Science group

I 01 [cat I type I code I

Chemical Constituent group

] 10 [family] type [code I

Astronomical general group

I 20]category I type I code]

136 APPENDIX A. NUMERIC CODES

A.1.4 Unit Codes

The unit codes are used in the DESCRIP0.UNITS, DESCRIP1.UNITS,

DESCRIP2.UNITS, DESCRIP3.UNITS, and DESCRIP.UNITS record

fields. It specifies tile physical units for the data and its dimension. Each

code is stored in all integer at least 32 bits long. Tile bits are numbered

from 0 to 31, the least significant bit ill the integer being number 0. Bits

29 to 31 define an index of eight possible forms of specifying units.
The format of the units code is as follows:

0 : Special and mathematical units

29 25 16

UNIT

0

TYPE

CAT

UNIT

(bits 25 to 28, values 0 to 15) unit type
(bits 16 to 24, values 0 to 511) unil category

(bits 0 to 15, values 0 to 65535) unit

1 : SI base units and dimensionless units from SI base units

1 I BASE ID[EXPON PREFIX [FAr [UNIT [
29 2524 20 12 4 0

BASE

D

EXPON

(bits 25 to 28, values 0 to 15) base unit (nmst be nonzero)

1 :length meter m
2 : mass gram g
3 : time second s

4 : temperature kelvin K
5 : amount of a substance mole tool

6 : electrical current ampere A

7 : luminous intensity candela cd

8 : plane angle radian tad
9 : solid angle steradian sr

(bit 24, values 0 to 1) dimensionless unit flag
0 : specifies a single base quantity

1 : specifies a ratio of quantities with the same BASE

(e.g., g/kg)

(bits 20 to 23, values 0 to 15) exponent of the base unit.
Stored as 8+exponent (e.g., m: would have EXPON =

10)

.4.1. C,ENTRALLY DEFINED CODES 137

PREFIX

FAC

UNIT

(bits 12 to 19, values 0 to 255) prefix for the base unit.

Stored as 128+prefix (e.g., crn would have PREFIX =

126). Standard prefixes are:
-18 atto a

-15 femto f

-12 pico p
-9 nano n

-6 micro
-3 milli m

-2 centi c
- 1 deci d

1 deka da

2 hecto h

3 kilo k

6 mega M

9 giga G
12 tera T

15 peta P
18 exa E

(bits 4 to ll, values 0 to 255) for dimensionless quanti-

ties, the difference between the exponent of the numer-

ator and the exponent of the denominator. Stored as

128+difference (e.g., km/cm would have FAC = 128 +

5 = 133)

(bits 0 to 3, values 0 to 15) for dimensionless quanti-

ties, provides an arbitrary index to distinguish between

otherwise similar quantities (e.g., kg/g vs. g/mg)

2 : SI approved named units

121 .,sE IP,E ixlc,Tl NiTI
29 20 12 6 0

BASE (bits 20 to 28, values 0 to 511) base units. A bit array
that specifies which fundamental SI quantities make up

the unit. From LSB to MSB the bit position, the value to

add, and the basic units are (bit number, integer value,

unit):
0 1 length
1 2 mass

2 4 time

138 APPENDIX A. NUMERIC CODES

PREFIX

CAT

UNIT

3 8 temperature
4 16 amount of a substance

5 32 electrical current

6 64 luminous intensity

7 128 plane angle

8 256 solid angle

(e.g., N = kg m/s2;kg = 2, m = 1,s = 4 so that BASE

=2+1+4=7)

(bits 12 to 19, values 0 to 255) prefix for the base unit.

Stored a.s 128+prefix (e.g., cm would have PREFIX =

126). Standard prefixes are given above

(bits 6 to 11, values 0 to 63) the category of the unit,

grouping quantities with the same physical meaning (e.g.,
newton and dyne would be found in the same category:

force)

(bits 0 to 5, values 0 to 63) provides an arbitrary index

to distinguish between quantities in the same category

(e.g., newton vs. dyne)

3 : General SI units in terms of base units with restrictions

4 : General non-SI units in terms of base units with restrictions

The structure of both of these forms is the same. Index 3 applies to the

SI combination of units, and index 4 applies to any combination of units
that include at least one non SI unit. There are certain restrictions in the

sizes of the various fields, depending on the number of base units that make

up the unit. Any unit that cannot be put into this form should use form 5

(General units without restrictions).

All cases have:

29 20

For 1 base unit: I E1 I cAT I I
15 8 0

16 12 7 0

17 14 11 7 0

For 2 base units:

For 3 base units:

,4.1, CENTRALLY DEFINED CODES

BASE

Ei

139

For 4 base units:

For 5 base units:

For 6 base units:

For 7 base units:

For 8 base units:

For 9 base units:

17 14 11 8 5 0

IEllE21E31E41 CATI N,TI
18 16 14 12 10 6 0

18 16 14 12 10 8 5 0

19 I7 15 13 7 0

18 16 14 12 7 0

1
19 17 15 13 11 7 0

(bits 20 to 28, values 0 to 511) base units. A bit array

that specifies which fundamental SI quantities make up

the unit. From LSB to MSB the bit position, the value to

add, and the basic units are (bit number, integer value,
unit):

0 1 length
1 2 mass

2 4 time

3 8 temperature
4 16 amount of a substance

5 32 electrical current

6 64 luminous intensity

7 128 plane angle

8 256 solid angle
(e.g., N = kg m/s2; kg = 2, m = 1, s = 4 so that BASE

=2+I+4=7)

the exponents of the base units. Note that a zero expo-
nent is not included, since it is assumed that the base

unit exists if specified. The size and value of the field

is variable, depending on the number of base units as
follows:

140

CAT

UNIT

APPENDIX A. NUMERIC CODES

base num bits range exponents
1 15 to 19 0to31 -16 to 16

2 12 to 19 0to15 -8 to8

3 11 to 19 0to7 -4 to4

4 8to 19 0to7 -4 to4

5 10tol9 0to3 -2 to2

6 8to 19 0to3 -2 to2

7 13 to 19 0to 1 -lor 1

8 12 to 19 0tol -lot l

9 11 to 19 0to 1 -1 or l

the category of the unit, grouping quantities with the

same physical meaning (e.g., m/s and em/s would be
found in the same category: velocity). The size and value

of the field is variable depending on the number of base

units as follows:
base num bits rang____.___e

1 8to 14 0to 127

2 7 to 11 0 to 31

3 7 to l0 0 to 15

4 5 to 7 0 to 7
5 6 to 9 0 to 15

6 5 to 7 0 to 7

7 7 to 12 0 to 63

8 7 to 11 0 to 31

9 7 to 10 0 to 15

provides an arbitrary index to distinguish between quan-
tities in the same category (e.g., m/s vs. cm/s). The

size and value of the field is variable depending on the
number of base units as follows:

base num bits range
1 0to7 0to255

2 0to6 0to 127

3 0to6 0to127
4 0 to 4 0 to 31

5 0 to 5 0 to 63

6 0 to 4 0 to 31
7 0to6 0to127

8 0to6 0to127

9 0to6 0to127

5 : General units with no restrictions

A.I. CENTRALLY DEFINED CODES 1,11

A T 1 UNI 1
29 2019 9 0

BASE

T

CAT

UNIT

(bits 20 to 28, values 0 to 511) base units. A bit array

that specifies which flmdamental SI quantities make lip

the unit. From LSB to MSB the bit position, the value to

add, and the basic units are (bit number, integer value,

unit):

0 1 length
1 2 mass

2 4 time

3 8 temperature
4 16 amount of a substance

5 32 electrical current

6 64 luminous intensity

7 128 plane angle

8 256 solid angle

(e.g., mph = 0.447 m/s; m = l,s = 4 so that BASE

=1+4=7)

(bit 19, values 0 to 1) SI unit indicator
0 : SI unit

1 : non-SI unit

(bits 9 to 18, values 0 to 1023) the category of the unit,

grouping quantities with the same physical meaning (e.g.,

mph and fps would be found in the same category: ve-

locity)

(bits 0 to 8, values 0 to 511) provides an arbitrary index

to distinguish between quantities in the same category

(e.g., mph vs. fps)

7 : Locally defined units

These units are site-defined as specified in Section A.2.5.

A.1.5 Packing Codes

The packing codes are used in the PAKSPEC.CODE record field and specify

the packing method for the data. Each code is stored in an integer at least

32 bits long.

Only two packing methods are currently defined. The first one has

a code value of 1 and is called NMC scaling. This method needs two

142

parametersto unpackthedata.
data,definedas

A-

APPENDIX A. NUMERIC CODES

One parameter is tile midpoint of tile

max + min

2

Tile other parameter is a scaling factor, given as

n = int [log(max -A) log(2)] + 1

Tile data are then packed by using

pdata = round [(data - A)215-"] .

The packed data values and tile parameter n are short integers. The pa-
rameter .4 is a floating-point number. These parameters are stored as (n, A)

ill the PAKVAL.INFO field. To unpack the data, the reverse procedure is

followed:

data = 2"-lSpdata + .4.

The second packing method is somewhat similar to the first. The two

parameters are the minimum value of the data and a scaling factor, given

as

max- rain
S_

32766

The data are then packed by using

pdata = r°und (data - min) + l's

The packed data are short integers, while the two parameters are

floating-point values. The parameters are stored as (min, s) in the

PAKVAL.INFO field. To unpack the data, the reverse procedure is fol-
lowed:

data = s (pdata - 1) + min.

The advantage to the first method is that more precision is retained

than in the second method. The disadvantage is that exponentiation must

be used in unpacking the data, which is a slow and computationally costly

step.

A.2. LOCALLY DEFINED CODES 143

A.1.6 Supplemental Codes

The supplemental codes are used in the DESCSUP.CODE record field.

Tile code specifies tile the interpretation of the supplemental information

for the dimension descriptors. Note that this information is centrally de-
fined rather than locally defined because it may be necessary in order to

use tilt" dimensions (e.g., the map projection parameters are needed if tile

dimensions are map coordinates).

There are currently four supplemental codes defined:

Code 1 specifies the map projection parameters: the radius factor (R),

the map scaling factor (k0), the pole longitude, and the pole latitude.

Code 2 specifies the map projection parameters: R, k0, the pole longitude,
and two standard latitudes.

Code 3 specifies tile reference surface pressure for meteorological sigma
coordinates.

Code 4 specifies tile reference troposphere-stratosphere boundary pres-

sure for meteorological sigma coordinates.

All supplemental values associated with the integer ID codes are
floating-point numbers.

A.1.7 Compression Codes

The compression codes are used in the COMPSPEC.CODE record field

and specify the method used to compress the data.

There are currently no compression codes defined, as compression has

not yet been implemented. (Code will be defined and listed here as re-
quired.)

A.2 Locally Defined Codes

This section describes the various metadata codes which are locally defined.

These codes can be created or modified by any site and generally refer to

information which is useful in using or interpreting the data, but not strictly
necessary in order to read it.

When giving datasets to other sites, it will be advisable to forward defi-

nitions of one's local codes as well. At the very least, these may be included

as comments (in COMMENT records) in the first data file of a group, or,
preferably, all the lists of local code definitions can be transmitted.

144 A PPENDLY ,4. NUMERIC CODES

A.2.1 Task Codes

The task code is used in the AUDIT.TREE record field. It specifies the

task that created the data. (Along with the site identifier and date, this

information makes up the history trace for a file.) Ta_sk codes are integer
values at least 32 bits long.

The codes may be assigned on any basis desired, although it is recom-

mended that a particular system or format be devised to maintain order.

One can assign a code for each general task, or for each program, or even

for each set of run-time parameters for each program. How much informa-

tion is required to distinguish one task from another is left to the data,set
creator to decide.

A.2.2 Data Source Codes

The data ,source code is used in the OBJDESC.ISOURCE record field. It

specifies the source of the data. This might refer to the site which generated

a data set, but that site might have obtained the data from elsewhere. It

might refer to the task which generated the data, but data.sets created by
two tasks which process the same data differently might still be considered

to have the same data source. An instrument which took the data may be

considered its source, or the platform from which the instrument operated.

The idea of "data source," then, is fairly flexible and open to interpretation;

it is therefore locally defined.

These codes are integer values at least 32 bits long.

An example may help in understanding the use of these codes. At Site 1

(NASA/GSFC Chemistry and Dynamics Branch), data are received from

the National Meteorological Center (NMC) in their packed format. The

data are then unpacked and put into the df format. The site identifier in

the AUDIT.TREE record would have one node containing the site identifier

for the NASA branch (1) and the task identifier for converting NMC packed

data to the df format (16777216). The data source code would be associated

with NMC (65536), since they provided the data.

In a second example, data are gathered by scientists at the same site for

stratospheric aircraft missions. The site would again be the same (1), but

the task of putting these data in the df format would be different from the

first one (33554432). The data source would also be different and would
indicate the NASA aircraft mission (512).

A.2. LOCALLY DEFINED ('ODES 1,15

A.2.3 Processing Codes

The processing code is used in the PROCSPEC.CODE record field. It,

specifies how subsets of the data have been processed. This code is different

from the task identifier, which identifies a task that, was used to produce

the dat, aset. Instead, the processing code provides additional information

about tile data itself; think of it as a sort of "Post-It" note attached to some

subset of the data. For example, the lead time of forecasts, the interpolation
parameters for subsets of the data, and parameters used in a model run can

all be specified here. These codes are integer values at least 32 bits long.

A.2.4 Local Quantity Codes

As described ill Section A.1.3, some quantity codes may be defined locally.
These codes all begin with 77 as tile first, two hex digits. The specification

of the last. six hex digits is left to each site to specify. This allows sites

to define special quantities that will not fit in any other categories. Also,

these codes will not have to be registered through the central site, allowing
for flexibility on the part of each site.

If a locally defined code proves to be widely used, a request should be

made to Site 1 for its addition to the list of centrally defined quantity codes.

A.2.5 Local Unit Codes

As described in Section A.1.4, unit codes may be defined locally. These

codes all begin with bits 29 to 31 as 111 (form 7). The specification of the

other bits is left to each site to define. This allows for sites to define special

units that will not fit in any other categories. The intention is that locally

defined units codes will be used as a temporary measure while registration
of an equivalent centrally-defined units code is pending. Also, these will

not have to be registered through the central site, allowing for flexibility on
the part of each site.

A.2.6 INFOSPEC Record Bytes

The INFOSPEC.INFO field contains a byte array that is specified by the
data originator. Sometimes information must be included in a file for

which none of the other records is suitable. When such information is

human-readable, it should go into COMMENT records; when it is binary
data or character flags, then it should go into an INFOSPEC record. The

INFOSPEC.INFO field can contain anything; however, we strongly suggest
that the first four bytes contain a long integer number that will uniquely
identify what is contained after.

146 APPENDIX A. NUMERIC CODES

Appendix B

Implementation Notes

The (If format specifies a standard form ill which scientific data can be writ-

ten, but it leaves to the user tile decisions on how to implement programs
to read and write the data.

This Appendix discusses issues relevant to implementing those pro-
grams; the procedures used at one site are described, and future enhance-

ments are suggested.

B.1 Standard library routines

Compared with certain other proposed standard formats, one omission

stands out with dr: no attempt is made here to specify a standard library
of I/O subroutines.

The fact is that a tradeoff exists between the flexibility needed to repre-

sent one's data as one desires, and the ability of a standard program to read

such a dataset. Take, for example, the issue of bad-data flags: using a single

bad-data flag value to signify bad or missing data over an entire dataset is

relatively simple to include in a dataset reader subprogram; implementing

a general reader able to cope with bad-data flag values which vary from

region to region in the data (as specified by START and END indices) can
be nightmarish. Let the reader be assured that such pathological cases are

by no means exceptional or rare.

The temptation to develop a format standard in parallel with its soft-

ware library is strong but should be resisted. It is all too easy, when con-

fronted with the challenge of writing subroutines to handle the wide variety

a good format allows, to rein in and limit that variety to make the pro-

gramming task easier. Thus, for example, data arrays might be required to

147

148 APPENDIX B. IMPLEMENTATION NOTES

be written ill row-major order, or their indices required to start, nunlbering

from 1.

Ill addition, the programming world is ill a state of flux at present;

object-oriented concepts are making inroads on traditional programming

paradigms, hnposing a standard software library at this premature stage,

allowing the fornlat to be dictated ILv programming considerations, couht

end up being an example of imposed obsolescence.
Tile authors have decided, then, to concentrate on tile format itself,

making it as complete, flexible, and unambiguous as possible. The df for-
mat is exactly "'A Standard Format for Programmers to grovel in lilts" (in

contradiction to a slogan proudly proclaimed by the creators of another

standard format). As experience with df datasets accumulates, a software

library can evolve and be built up to meet users' needs.
In designing this format, flexibility was chosen over convenient unifor-

mity. Tile task of programming for the general case is thus made more

difl]cult, and a general library will take considerable skill to produce. This

virtually rules out a single, standard, general set of subprograms able to

read erery df dataset appearing in the near future.

This strategy has tile disadvantage of cutting off many potential users

who are unwilling or unable to delve into the bit-level format specification

to implement their own I/O software, hi tile long term, though, it prevents
the format from being hobbled.

One promising possibility for the short term nevertheless appears when

one notes that it is possible to discern from any df dataset in a mechan-
ical fashion how it, may be read. Thus, it. should be possible to write a

program which, after scanning a sample dataset, would then construct a
subroutine to read any dataset similarly structured. Given that compli-

cated arrangements of bad-data flag values, data packing schemes, and

data array index orderings tend to be uniform across groups of datasets,

one custom-generated subroutine could be used to read any of a large group
of datasets, and a subroutine-writing program may prove quite profitable.

Ill the longer term, a general library of I/O subroutines for the df format
is desirable and should be written. But the authors feel it is better to wait

and let the best implementations rise to the top, than to impose an arbitrary

software package with misfeatures everyone will later come to regret.

B.2 Numeric Codes

Metadata in the df format occupies comparatively little space and is largely

independent of language because much of it is represented by integer codes.
While the format standard defines no mechanism for translating between

B.2. NUMERIC CODES 1-19

snch codes aud their meanings, how tile translation is inlplemented can
have a significant impact on performance.

On tile one extreme, users could look up the codes themselves from

long lists: this, of course, would be inconvenient and error-prone. At the

other extreme, code translations might be obtained using a network server.

similar to host name/lP address equivalence_ found using the Domain Name
System.

This section describes a simple implementation of the lookup mecha-
nism based on a set of lists maintained in text files. This mechanisnl is

used to provide translation for sites, tasks, quantities, units, packing codes,
dimensional supplemental information (as specified in DESCSI,'P records),

processing codes, and data source codes. Each code type has a correspond-

ing file, and each code integer value is key value in a lookup table of plain
text code explanations.

All of these files should reside in a central location (directory). If the

system allows, there shouhl be a global environment variable or logical name

that shouhl be set to DFCODES. This will allow software to be ported

between systems, and the files can be found using the globally defined
symbolic name.

Two categories of codes exist: those defined centrally, which are the

same for everybody, and those which are defined locally by each site (See
Appendix A). For example, site identification codes nmst be defined cen-

trally, so that everyone will know which site is which.

The centrally defined code lists are given standard names:

SITEIDS.TXT contains the list of site ID codes. Each line consists

of two text fields delimited by a colon: sitc-lD and

full-site-name.

VARTYPES.TXT contains the list of physical quantity types. Each

line consists of four text fields delimited by colons:

quanlily-lD, four-letter-quantity-name, fidl-quanlily-
name, and preferred-units-abbreviation.

UNITS.TXT contains the list of physical units. Each line con-

sists of four text fields delimited by colons: units-
code, full-units-name, units-abbreviation, and SI-

units-definition.

HOWPACK.TXT contains the list of packing code explanations. Each

line consists of four text fields delimited by colons:

packing-code, packing-description, packing-algorithm

(with PAKVAL packing parameters indicated as $1,

$2, etc.), and storage-spec (showing how the packing

parameters are ordered in a PAKVAL record, n indi-

150 APPENDIX B. IMPLEMENTATION NOTES

cating the number of parameter groups, S denoting

a short integer, F denoting a floating-point number,
and f denoting a long integer).

SUPCODES.TXT contains the list of dimensional supplemental codes.

Each line consists of three test fields: supplementary-

code, eode-&scription, and par'am¢t¢r-list. The pa-

rameter-list is, in turn, composed of subfields delim-

ited by semicolons, each subfield describing a supple-
mental value found in DESCSUP.

One makes modification to these files at one's own risk, since modifica-

tions will put the file out of step with all other sites.

The other, locally defined code lists are in the files:

Unnnnnnn.VAR contains a list of locally defined quantity codes; the
format of this file is the same as for VA RTYPES.TXT.

Unnnnnnn.UNT contains a list of locally defined units codes; the for-
mat of this file is the same as for UNITS.TXT.

Unnnnnnn.TSK contains the task ID codes. Each line consists of two

text fields delimited by a colon: task-code and ta.sk-

description.

Unnnnnnn.PRC contains the processing codes. Each line consists of

three text fields separated by colons: processing-code,

processing-title, and list-of-processing-variables. The

last field is composed in turn of an arbitrary num-
ber of subfields delimited by semicolons, each subfield

describing a single processing variable expected in a

PROCVAL record associated with a given processing
code.

Unnnnnnn.SRC contains the data source codes. Each line con-

sists of two text fields delimited by a colon:
three-letter-source-abbreviation and full-tezt-name-of-

source-instilulion.

where "nnnnnnn" is the local site ID in hexadecimal.

Note that these file names consist of eight or fewer uppercase alphanu-

meric characters followed by a period and three more uppercase alphanu-

meric characters, making the file names portable to a very wide variety of

computer systems.

A code translator program, then; would open one of these files, find

the line with the code or text for which it is searching, and retrieve the

text or code which corresponds to it. Since such translations need to be

done only for human readability, calls to code translators will probably not

B.3. FILE NAMING CONVENTIO:¥S 151

be prevalent in production programs, and the inefficiency implied by this

translation method is tolerable. One can improve performance, if desired,

by hard-wiring some of the most commonly used codes at a site into look-

up tables in the translator routines. If a code is not found in those tables,

then the routine will go to the files.

Note that when a file (or, more likely, a set of files) is imported from

another site, one would also import that site's Unnnnnnn. files as well.

Because the "nnnnnnn" part of their names will be different, the local U
files and the remote site's U files can co-exist without conflict. A df dataset

reader can obtain the originating site's ID from the dataset and use it
to find the local-code definition file it needs to make the translation into

human-readable terms. For example, the task identifier file for Site 1 will

be named U0000001.TSK, and the processing code file for Site 13579BD
will be U13579BD.PRC.

B.3 File Naming Conventions

Using a standard file format in a conventional file-oriented computing envi-

ronment, it is convenient to use a standard naming convention for the data
files written in that format.

It should be noted that this naming convention is NOT a part of the

proposed standard data file format, but instead co-exists alongside it as a
separate entity which others may find useful.

Different systems, of course, have wildly different constraints on file

namesIlengths, extensions, legal characters, etc. The naming convention

used should be adaptable for use with as many systems as possible.
The basic plan adopted here is to compose a file name of text fields

separated if possible by delimiters. The first field should signify the physical

quantity the file contains, and the last should indicate where the data came

from. Each of the rest of the fields, included only if there is room and if

the dataset creator desires, begins with a specific character distinguishing

it from the others. (This allows for automated parsing of file names.)

B.3.1 Fields

The text fields which make up a file name are

quantity A four-character alphanumeric field which begins the file name

and and indicates what physical quantity the file contains. This field

must start with an alphabetic character.

152 APPENDIX B. IMPLEMENTATION NOTES

date Indicates tile date for which the data are valid. Tlle leading character

will be I (for instantaneous data), D (indicating data averaged over

days), M(indicating data averaged over months), or Y (indicating data

averaged over years). If the rest of the field is numeric, then it may be
of the form "yymmdd" or 'yynamddhh', where the y's stand for 3"ear

digits, tile m's for month number digits, d's for tile digits of tile day
of the month, and h's for the hour of the day. If tile part of the date

field past the leading character is alphabetic, then it is a three-digit

base-26 number (A=0, Z=25) indicating the number of days since 1

January 1970.

time Iudicates the time for which the data are valid. The leading character

is T. If the rest of the field is numeric, then it is ofthe form 'mmmmss',

where the m's represent n_inutes, and the s's represent seconds.

source Indicates the source of tile data. This field is a three-character

alphanumeric string designating where tile data came from. It goes
at the end of the file name (usually as an extension) and has no leading

character.

format Indicates the format or binary representation used in the file. The

leading character is X. If there are no more characters in this field, or
if only one character. P (indicating that the file contains packed data)
follows, then the file uses XDR data formats. Otherwise, the lead

character is followed either or both of two subfields: a C followed by

either A or E. indicating whether character data is ASCII or EBCDIC;

or a B followed by a floating-point format indicator (E for IEEE, V for

VAX, I for IBM mainframe, and Y for Cray), a byte-order flag (B for

big-endian, L for little-endian), a word-order flag (B for big-endian, L
for little-endian), record-header flag (C for C-style stream files without

record headers, F for Fortran record headers), a flag indicating the

type of file record structure (S for pure stream files, V for variable-

length records, and F for fixed-length records), and a packing flag (P

for packed data. U for unpacked).

sequence Indicates some user-specified sequence number or code. The

leading character is E.

gridtype Specifies on what sort of grid regular, rectangularly gridded data
is written. The leading character is G, and the characters following
should follow some local convention to indicate grid type, location,

grid spacing, etc. If needed, decimal points may be represented by
Level-2 delimiter characters (see Section B.3.2).

I1.3. f'ILE NAMING CONVENTION.S' 153

forecast Indicates, for model forecast data, how far in advance of the data-

valid date or time the data were generated. The leading character is
F.

special Is a field to hold any miscellaneous information the user feels

silo,l,[b," included in lhe filo nanw. Tho I_'ading eharacwr is S.

B.3.2 Delimiters

Some character or set of characters is desirable to separate fields. In this file

naming conw_ntion, a hierarchy of (non-alphanumoric) delimiter characters

is defined, organized in decreasing order of magnitude at leKst three levels

deep. with alternative characters defined for each level (to avoid operating

system pickiness).

Many operating systems divide up file names into a name-part and an

extension separated by a character such as a period. Therefore, we define

the Level-0 delimiter as that character which separates between a file name

proper and a file extension or type). Th,- first choice for this character is

whatovor t]w operating system uses (a period for MS-DOS and VMS, a

spaco for CMS. etc.). [f an operating system does not use extensions, then

a period should be used.

Level-1 delimiters are used for padding and Ks optional field separators.
The first choice is the underscore character (" "). If this is unavailable, the

dKsh or hyphen character ("-") may be used.
Level-2 delimiters are used Ks decimal points. Periods may not be used

in most situations, since they are the Level-0 delimiters in many environ-

ments. Instead, the first choice is the dollar sign ("$"), with the percent

sign ("Y.") used Ks an alternate.
Note that Level-0 delimiters are required, while Level-I delimiters are

used to improve readability where the operating system allows longer file

names. Level-2 delimiters may be used where needed.

B.3.3 Backus-Naur Form

This file naming convention may be specified in Backus-Naur form as:

<filename> ::= <name_part> <delimO> <type_part>

<name_part> ::= <quantity_field> [<optional_field>]

{ <deliml> <optional_field> }

154 APPENDIX B. IMPLEMENTATION NOTES

<type_part> ::= <source_field>

<quantity_field> ::-- <name_l> i <name_2> I <name_3> I <name_4>

<optional field> ::= <date_field>) <grid_field>

I <forecast_field> I <sequence field>

I <format_field> I <special field>

I <time-field>

<date_field> ::= <ave_spec> <date_spec>

<grid_field> ::= "G" <grid_form>

<forecast_field> ::= "F" <forecast_form>

<sequence_field> ::= "E" <upperalphanumeric>

{ <upperalphanumeric> }

<format_field> ::= "X" { <format_form> }

<special_field> ::= "S" <upperalphanumeric>

{ <upperalphanumeric> }

<time_field> ::= "T" <time_form>

<name_l> ::= <upperalphabetic> <deliml> <delimi> <deliml>

<name_2> ::= <upperalphabetic> <upperalphanumeric> <deliml>

<deliml>

<name_3> ::= <upperalphabetic> <upperalphanumeric>

<upperalphanumeric> <delimi>

<name_4> ::= <upperalphabetic> <upperalphanumeric>

<upperalphanumeric> <upperalphanumeric>

<ave_spec> ::= "I" I "D" i "M" I "Y"

<date_spec> ::= <date_long> [<date_short>

B.3. FI£ENAMING CONVENTIONS 155

<date_long> ::= <year_digit> <year_digit> <month_digit>

<month_digit> <day_digit> <day digit>

[<hour_digit> <hour_digit>]

<date_short> ::= <base_26_digit> <base_26digit>

<base_28_digit>

<base_26_digit> ::= <upperalphabetic>

<grid_form> ::= <grid_spec_char> { <grid_spec_char> }

<grid_spec_char> :== <upperalphanumeric> [<delim2>

<forecast_form> ::= "H" <hour>

["D" <day>

[<upperalphabetic> <digit> { <digit> }

<hour> ::= <digit> _ <digit> }

<day> ::= <digit> { <digit> }

<format_form> ::= "P"

J "C" <string_code>

I "B" <binary_code>

<string_code> ::= "A"] "E"

<binary_code> ::= <floating_format> <byte_order> <word_order>

<fin_header> <disk_organize> <packing>

<floating_format> ::= "I" ["E" i "V °' J "Y"

<byte_order> ::= "B" ["L"

<word_order> ::= "B" ("L"

<fin_header> ::= "C" ["F"

<disk_organize> ::= "S" I "V" I "F"

156 APPENDIX B. IMPLEMENTATION NOTES

<packing> ::= "P" I "U"

<upperalphanumeric> ::= <upperalphabetic> I <digit>

<upperalphabetic> ::= "AZ"

<digit> ::= "0'....9"

Appendix C

Future Enhancements

As of this writing, the df format is being used to store data.sets in the

Atmospheric Chemistry and Dynamics Branch at NASA Goddard Space
Flight Center in Greenbelt. Maryland. A wide variety of data_ts have

been written in the format: vertical profile soundings, three-dimensional

global grids of meteorological fields, global inaps of total ozone, and data

taken along aircraft flights. The format has been in use for about a year

and has been used quite successfully.

In the near term, the important thing is to widen the scope of data,sets

written in the format, covering a larger variety of research groups and

data structures. This should reveal any bugs or anabiguities in the format

specification, and provide an opportunity to include any important missing

features the authors have not thought of.
Future plans for the df format include:

• Make provision for using special file record structures. Because the

records containing metadata are written to a data.set along with the
data, dealing with random or keyed access records in a file is difficult.

On systems in which files can be addressed by byte offsets within

a file, random access is no problem, but for other systems it can

be troublesome. Three solutions suggest themselves: (a) treating the

metadata records the same as data records (e.g., by padding to a fixed

record length); (b) creating a new POINTDAT record which points to

a separate file in which the data are kept; and (c) reminding the user

that this format does not specify how data are physically stored, but
merely how the data are to be presented to the readers--the data and

metadata, then, could conceivably be split into two distinct files which

(through a layer of software) would appear to the reader subroutines

157

158 APPENDL¥ C. FUTURE ENHANCEMENTS

as a single dataset. Whichever method is eventually chosen, care

must be taken to maintain the highest degree of independence on any

particular operating system.

• Be able to write records within an object in random order. Cur-

rently, the various records must be present ill tile dataset in a fixed

and specified order. This will probably require creating a flag from
one of the reserved words in the TEST record, as well as creating a

new "Length-of-next-record" record to facilitate skipping around in a
dataset.

• Determine a relationship to other formats. The two most widely

used standard formats currently are the Hierarchical Data Format

(HDF) [NCSA Software Tools Group, 1989], created by The National

Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champaign, and netCDF [Rew, 1990]. created

by the Unidata Program Center of the University Corporation for
Atmospheric Research (UCAR). The HDF format relies on centrally-

defined tags which indicate data objects within a dataset; a df dataset

could be assigned its own tag and be encapsulated in an HDF dataset
as an HDF data object. The netCDF format actually specifies a
software interface rather than a dataset format. The model it uses to

manipulate data is that of a rectilinear lattice of data points, which
is a subset of the data structures dealt with by the df format. Thus,

a software interface can in principle be written to deal with df format

datasets using the netCDF library calls.

• Determine a representation for trees and arbitrary graph structures.

The most likely method is to enter the data associated with nodes in
the data records with a Level 1 or Level 2 dimension of "index," with

the connectivity information being records in a DESCSUP record for
that dimension. Alternatively, an Auxgroup may be defined to specify

connectivity information between data points. A third possibility is to
create a new record type specifically to represent connections between

data points.

• Create standard I/O libraries.

• Create a suite of standard software tools for inspection of df datasets.

• Establish an appropriate procedure for assigning site iDs and reg-

istering other codes whose definitions are requested by various sites.

Appendix D

Miscellaneous Items

D.1 Trademarks

This document refers to many commercial products and companies. No

endorsement of any of these is expressed or implied by their use here.

• Unix is a registered trademark of UNIX System Laboratories, Inc.

• VAX and VMS are registered trademarks of Digital Equipment Cor-

poration.

• IDL is a trademark of Research Systems, Inc.

• Sun is a registered trademark of Sun Microsystems, Inc.

• Cray is a registered trademark of Cray Research, Inc.

• IBM is a registered trademark of International Business Machines,
Inc.

• Iris and SGI are registered trademarks of Silicon Graphics, Inc.

• MSDOS is a registered trademark of Microsoft Corporation.

• Macintosh is a registered trademark of Apple Computer Inc.

• PostScript is a registered trademark of Adobe Systems, Inc.

• X Window system is a trademark of the Massachussetts Institute of

Technology

• Motif is a trademark of the Open Software Foundation

• Post-It is a trademark of 3M Commercial Office Supply Division.

159

160 APPENDIX D MISCELLAXEOI'S ITEMS

D.2 Acknowledgements

The authors would like to thank Dr. Mark Schoeberl of Code 916, NASA

Goddard Space Flight Center in Greenbelt, Maryland, for supporting the
idea of standard data formats and for allowing us to proceed to create a

new standard when the existing ones were found not to meet our nt_eds.

Bibliography

[NCSA Software Tools Group, 1989] NCSA Software Tools Group, NCS.4

HDF Specificatwns. University of Illinois at Urbana-Chanlpaign,
anonymous-ft p :fl p.ncsa.uiue.edu, 1989.

[Pullen, 1990] Pullen. S. E., Recommended standard for seismic (/radar)

data files in lhe personal computer ewdromnent. Geophysics. 55. 1260-
1271. 1990.

[Ramirez. 1991] Ramirez, J. Raul, l,'nderstanding Universal Exchange For-

mats. Photogrammetr_c Engineering _."Remote Sensing. 57, 89-92, 1991.

[Rew, 1990] Rew, Russel K., netCDF User_ Guide: .4n Interface for Data
Access, Unidata Program Cemer, anonymous-flp:unidata.ucar.edu, 1990.

161

Index

i

!

_m

=

=

A

Advantages of the df format, 5,
10, 22, 123

APPLEV field, 26, 59, 60, 61, 110-
117, 119, 121,122

APPNDEX field, 26, 60, 61, 110-

ll9, 121, 122
ARRORD field, 31

ASCII character set, 30, 70, 71,
152

Audit mechanism, 5, 12, 15, 18,
28, 35, 69, 108, 109, 133

AUDIT record, 17, 18, 27, 33, 35,

69, 108, 109, 132, 144

RECTYPE, see RECTYPE
field

TREE, see TREE field

Authoritative records, 19, 22, 41,
43, 45

AUXFMT field, 57; 61, 109-122

Auxgroup records, 17, 23, 26, 27,
57, 59-62, 158

Auxiliary information, 15, 19, 20,
25-27, 57, 58, 60-62, 69,

109-115, 117-119, 121,
122

AUXRANGE record, 17, 20, 59,

60,61,109, lll-ll6,118,

121, 122

APPLEV, see APPLEV field

DINDEX, see DINDEX field

LEVEL, see LEVEL field

162

APPNDEX, see APPNDEX
field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE
field

REFLEV, see REFLEV field

DINDEX, see DINDEX field

LEVEL, see LEVEL field

REFNDEX, see REFNDEX
field

AUXSPEC record, 17, 19, 25, 34,
57, 59 62,106, 109, 110,
112-114, 116, ii7, I19
121

AUXFMT, see AUXFMT field

AUXTYPE, see AUXTYPE
field

END, see END field

NUMAPP, see NUMAPP field

NUMREF, see NUMREF field

NUMSUP, see NUMSUP field

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

START, see START field

UNITS, see UNITS field

AUXSUP record, 17, 20, 58, 62

CODE, see CODE field

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

SVALS, see SVALS field

AUXTYPE field, 58, 109-122

==

INDEX

AUXVAL record, 17, 20, 57, 61,
110-122

AVALS, see AVALS field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE
field

AVALS field

AUXVAL record, 61, 110-122

DESCVAL record, 49, 75, 76,

78, 79, 81-83, 86-104

AVGCOD field, 46, 86

DESCRIP3 record, 82

B

Bad-data flags, 5, 19, 25, 51, 52,
65, 104, 147, 148

BADVAL record, 17, 19, 23, 25,
33, 51, 65, 104-106

END, see END field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE
field

START, see START field

VALUE, see VALUE field

Boolean type, 130

BSWAP field, 30

Bytes, 7, 15, 16, 28-30, 33, 35, 67,

68, 70, 71,127, 130-132,
145, 152, 155, 157

C

Central authority, 5, 6, 8, 9, 11,

15, 35,126, 129,133,143,
145, 149, 158

Character type, 7, 18, 28, 30, 33,
36, 70,131,132,145,150-
153

CHARSET field, 30

CMPNUM field, 34, 66-68
CODE field

163

AUXSUP record, 62

COMPSPEC record, 66, 67,
143

DESCSUP record, 50, 143

PAKSPEC record, 63.64, 65.
141

PROCSPEC record, 53, 107,
145

COMCOD field, 33.36. 129

COMMENT record, 17, 18, 23,

27, 33, 35, 36, 74, 126,

143, 145

NOTES, see NOTES field

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

Comnlents. 4, 8, 15, 18. 23, 123,

126, 143

COMPDAT record, 17, 20, 34, 67,
68

RECTYPE, see RECTYPE
field

VALS, see VALS field

Compdata records, 17
COMPFMT field, 67, 129

COMPFORM record, 17, 20, 66,
67

COMPFMT, see COMPFMT
field

RECTYPE, see RECTYPE
field

Compgroup records, 17, 34
COMPLEN record, 17, 20, 34, 67,

68

LENGTHS, see LENGTHS field

RECTYPE, see RECTYPE
field

Complex floating-point type, 131,
132

COMPNUM field, 66, 67

Components, 6, 13, 14, 15, 18,

21, 37, 40, 51, 52, 60, 73,

164

80,83,87,89,104,105.
107-109,112,114,116,
117,127

Compression,9,12,15,20,34,67,
68.124.143

parameters.20.67
COMPSPECrecord.17,20,66,

67,143
CODE.see CODE field

COMPNUM. see COMPNUM

field

RECTYPE. see RECTYPE

field

COMPVAL record. 17.20, 66.67

INFO. see INFO field

RECTYPE. see RECTYPE

field

Conflicting goals/needs. 2. 3. 6.
10. 11

Conformance to a standard. 4, 10,
124

Connectivity information. 124. 158
Conversion of machine data rep-

resentation, 3, 4, 6, 7,

123

Coordinates, 6, 13, 14, 21, 22, 87,

143

Customization, 3, 5, 10, 148

D

Data object, 15, 16-18, 20, 21,

30, 33, 35, 37-39, 53, 57,

63, 66, 70, 71, 73, 74, 76,

80, 87-90, 93, 106, 110,

114, 119, 124, 127

Data.set, 3-5, 7-10, 12, 16, 17-19,

21, 22, 24, 27-31, 34-36,

103, 108, 123, 124, 126,

127, 133, 143-145, 147,

148, 151, 157, 158

L\'DEX

Date, 27. 28, 35, 93, 108. 109,
144. 152-155

DATFMT field, 40. 52. 63. 68,

74.77, 78, 80, 84, 85, 88,

90.91.94. 101. 103. 129

Datmn. 6. 13.21. 127

Delimiters, 16, 149-153

Descgroup records. 17, 48
DESCRIP record. 17. 19.24.41-

43. 45. 46. 47. 49. 50.
59.60.99. 129. 135. 136

DESFMT. see DESFMT field

DESSUP. see DESSUP field

DESTYPE. see DESTYPE field

DEXSORT. see DEXSORT

field

NDEX. see NDEX field

RECSORT. see RECSOHT

field

DINDEX, see DINDEX field

LEVEL, see LEVEL field
RECTYPE. see RECTYPE

field

STORG, see STORG field

UNITS, see UNITS field

DESCRIP0 record. 17, 18, 37, 40,

52, 63, 68, 74, 77, 80, 84,

88, 90, 91, 94, 101,103
DATFMT, see DATFMT field

RECTYPE, see RECTYPE

field

UNITS, see UNITS field

VARTYPE, see VARTYPE field

DESCRIP1 record, 17, 19, 23-25,

38, 41, 48-50, 59, 60, 68,

74, 75, 77-79, 81, 82, 84,

85, 88, 90-92, 94-98,100-

102, 104, 129, 135, 136

DESFMT, see DESFMT field

DESSUP, see DESSUP field

DESTYPE, see DESTYPE field

DEXSORT, see DEXSORT

INDEX

field

NDEX, see NDEX field

RECSORT, see RECSORT
field

DUPNUM. see DUPNUM field
END. set END field

GPTNUM, see GPTNUM field

RECTYPE, see RECTYPE
field

START. see START field

STORG, set STORG field

UNITS, see UNITS field

DESCRIP2 record. 17, 19, 24, 39,
43.48 50.59.60.75.79.

82. 86. 89. 90. 93. 98.

102. 104. 129. 135. 136

DESFMT. see DESFMT field

DESSUP. see DESSUP field

DESTYPE. see DESTYPE field

DUPNUM, see DUPNUM field

NDEX, see NDEX field
RECTYPE. see RECTYPE

field

STORG, see STORG field

UNITS, see UNITS field
DESCRIP3 record. 17-19, 23-25,

39, 45, 48-50, 59, 60, 84,

86, 87, 106,129,135,136

AVGCOD, see AVGCOD field

DESFMT, see DESFMT field

DESSUP, see DESSUP field
DESTYPE, see DESTYPE field

DEXSORT, see DEXSORT
field

NDEX, see NDEX field

RECSORT, see RECSORT
field

DUPNUM, see DUPNUM field

END, see END field

GPTNUM, see GPTNUM field

RECTYPE, see RECTYPE
field

165

START_ see START field
STORG. see STORG field

UNITS, see UNITS field

Descriptors. 19, 22, 23, 33, 40-43,
45 47.49.59.73.87.93.

100. 143

DESCSUP record, 17, 19, 24, 41-

43, 45-47, 50, 124: 143,
149. 150. 158

CODE. see CODE field

DEXSORT. see DEXSORT

field

NDEX, see NDEX field

RECSORT. see RECSORT

field

DLEVEL. set DLEVEL field

DINDEX, see DINDEX field

LEVEL. see LEVEL field

RECTYPE. see RECTYPE

field

SVALS, see SVALS field

DESCVAL record. 17. 19.24.41-

43, 45-47, 49, 50, 75, 76.

78. 79.81-83, 85-104
AVALS, see AVALS field

DEXSORT, see DEXSORT
field

NDEX, see NDEX field

RECSORT, see RECSORT
field

DLEVEL, see DLEVEL field

DINDEX, see DINDEX field

LEVEL, see LEVEL field

RECTYPE, see RECTYPE
field

DESFMT field

DESCRIP record, 47, 49, 129

DESCRIP1 record, 42, 49, 74,

75, 78, 81, 82, 85, 88-

92, 94-98,101,102, 104,
129

DESCRIP2 record, 43, 49, 75:

166 LVDEX

76, 79, 82, 89, 90, 93, 98,

99, 102, 104, 129

DESCRIP3 record, 46, 49, 86,

87, 129
DESNUM field

DIMSPEC1 record. 38, 41,

74, 77, 80, 84, 88, 90, 91,
94, 101, 103

DIMSPEC3 record, 39, 45,

80, 84
DESSUP field

DESCRIP record, 47, 50

DESCRIP1 record, 42, 50, 74,

75, 78.81, 82, 85, 88-92,

94-98. 101, 102. 104

DESCRIP2 record. 43.50, 75.
76.79, 82, 89, 90, 93, 98,

99. 102, 104

DESCRIP3 record, 46, 50, 86,

87
DESTYPE field

DESCRIP record, 47, 99,135

DESCRIP1 record, 42, 74, 75,

78, 81, 82, 85, 88-92, 94-
98, 101, 102, 104. 135

DESCRIP2 record, 43, 75, 76,

79, 82, 89, 90, 93, 98,

102, 104, 135

DESCRIP3 record, 46, 82, 86,
87, 135

DEXSORT field

DESCRIP record, 47, 48 50,
99

DESCRIP1 record, 24, 41, 74,

75, 81, 88, 90-92, 94-98,

101, 102, 104

DESCRIP3 record, 45, 82

DESCSUP record, 50

DESCVAL record, 49, 75, 76,

81-83, 88-99, 101-104

df format, 2, 11, 13, 15, 16, 18, 22,

24, 27, 29, 35, 69, 123-

125, I27, 133. I44, 147,

148, 151, 157, 158

Dimensionless units. 136, 137

Dimensions, 4, 6, 8, 14, 15. 19-
22, 24-26, 28.31.37, 38.

41-43.45.46.49 51,53.

56-61, 63, 69, 73, 76-78,

80, 83, 84, 86, 87, 90, 91,
93,100,101,105-107,109.

110, 112-114. 116-121,

123-125, 135, 136, 143.

149, 150, 158

indices, see Indices

level, see Level

Level O, see Level 0 dimen-
sions

Level 1, see Level 1 dimen-

sions

Level 2, see Level 2 dimen-

sions

Level 3, see Level 3 dimen-
sions

order, see Order

rank, see Rank

Dimgroupl records, 17

Dimgroup2 records, 17

Dimgroup3 records, 17

DIMSPEC0 record, 17, 18, 24, 37,

40, 52, 68, 74, 76, 80, 83,

88, 90, 91, 94, 101, 103
GPTNUM, see GPTNUM field

INDEX, see INDEX field

RECTYPE, see RECTYPE
field

DIMSPEC1 record, 17, 18, 23, 24,

38, 41, 47, 74, 77, 80,

84, 88, 90, 91, 94, 101,
103

DESNUM, see DESNUM field

INDEX, see INDEX field
RECTYPE, see RECTYPE

field

INDEX

DIMSPEC2 record, 17, 18, 24, 39,

43, 47, 48, 68, 74, 77, 80,

84, 88, 90, 91, 94, 101,
103

GPTNUM, see GPTNUM fiehl
INDEX, set INDEX field

RECTYPE, see RECTYPE
field

DIMSPEC3 record, 17, 18, 39, 45,

47, 77, 80, 84

DESNUM, see DESNUM field

RECTYPE, see RECTYPE
field

DINDEX field

AUXRANGE record

APPLEV, 60

REFLEV, 59

DESCRIP record, 48, 49, 50,
59, 60, 99

DESCSUP record

DLEVEL, 50

DESCVAL record

DLEVEL, 49, 75, 76, 81-

83, 88-99, 101-104

Disadvantages of the df format, 5,
6, 8, 10, 123, 124, 148

Distribution of codes, 8, 125, 126

DLEN field, 32, 71
DLEVEL field

DESCSUP record, 50

DESCVAL record, 49, 75, 76,

81-83, 88-99, 101-104
Documentation, 1-4, 6, 7, 10, 12,

35, 125, 159

Double precision floating-point type,
7, 32, 71, 130-132

DP field, 32

DPAKFMT field, 63, 65, 68, 129
DUPNUM field

DESCRIP1 record, 42, 47, 74,

75, 78, 81, 82, 85, 88-91,

94-98, 101, 102, 104

167

DESCRIP2 record, 43,47,75,

76,79,82,89,90,93,98,

102, 104

DESCRIP3 record, 46,47,86,
87

E

Efficiency, 3, 5, 7, 10-12, 28, 151

Encoding. 8. 15, 129
END field, 25, 69, 100

AUXSPEC record, 26, 27, 57,

60, 61, 106, 109-122

BADVAL record, 25, 51,103-
106, 147

DESCRIP 1 record, 25, 41, 74,

75, 78, 81, 82, 85, 88-92.
94-98. 100-102, 104

DESCRIP3 record, 45, 46, 82,

86.87, 106

PAKSPEC record, 23, 63, 106

PROCDUP record, 23, 56,
106

PROCSPEC record, 23, 25,
53, 106, 107

Exchange (of data), 1, 10

Extended precision floating-point

type, 130-132

Extensions (file name), 151-153
eXternal Data Representation, see

XDR

F

Features, 11, 125, 126, 148, 157

File format, 1-3, 5, 7, 9-11, 123-

125, 147, 148, 151, 158,
160

dr, see df format

HDF, see HDF

netCDF, see netCDF

File names, 4, 27, 150-153

168 INDEX

FLEN field, 32, 71

Flexibility, 5, 9-12, 14, 22, 123,

124, 144, t45, 147, 148

Floating-point type, 1, 4, 9, 15,
32, 42, 43, 46, ,17, 50,

71.79, 83. 110. ll,l, 116,

1i7, 120, 121, 130, 142,

143, 150, 152, 155

complex, see Complex floating-

point type

double precision, see Double

precision floating-point type

extended precision, see Ex-

tended precision floating-

point type

single precision, .see Single pre-

cision floating-point type

super-extended precision..see

Super-extended precision

floating-point type

Forecasts, 145, 153 155

Fortran. 16, 31, 69, 71, 126, 152

FPFORM field, 32, 71

G

GPTNUM field

DESCRIP1 record, 42, 48, 68,

74, 75, 78, 81, 82, 85,

88-92, 94 98, 100-102,
104

DESCRIP3 record, 45, 46, 48,

82, 86, 87
DIMSPEC0 record, 37, 40,

52, 68, 74, 76, 77, 80, 83,

88, 90, 91, 94, 101, 103
DIMSPEC2 record, 39, 43,

48, 68, 74, 77, 80, 84, 90,

91, 94, 101, 103

Grid points, 14, 19, 21, 22, 24-
27, 37-39, 41-43, 45 47,

49,51,53,56,57,61,63,

74, 76,87, 100,101, 118

Grids, 21, 73, 80, 87, 124, 126,

152,154,155, 157

H

HDF (Hierarchical Data Format),
125. 158

[leaders

of records, 29, 31, 71. 126,

152, 155

of strings, 131
Hexadecimal notation, 29= 129,132.

145. 150

tlistory ofdataset. 27, 29.35. 108.
123. 14,1

I|OWPACK.TXT file. 1,19

I

IDXSTART field, 31, 37-39.41

43,45-47,51,53,56,57,

63, 100

Importation of dat_sets= 133, 151
INDEX field

DIMSPEC0 record, 24, 37,

74,76,77,80,83,88,90,

91, 94, 101, 103

DIMSPEC1 record, 24, 38,

41,74,77,80,84,88,90,

91,94, 101, 103

DIMSPEC2 record, 24, 39:

43,74,77,80,84,88,90,

91,94, 101, 103

Indices, 16, 22, 23, 31, 70, 71, 73,

74,80,87,88,90,91,93,

98, 101, 103, 105, 107,

109, 112, 113, 119

of auxiliary information, 25-

27,59-61,111,115,116,

118, 121, 122

INDEX

of dimensions, 13, 14, 18, 21,

22, 23, 24, 25, 37-39, 41,

43, 47, 49, 50, 59, 60, 73,

76, 83, 87, 124, 125, 148

of records, 23, 36, 41, 45, 47-

51, 53, 55 57, 59, 61 63,
65

of START/END fields, 25, 26,

100, 147
INFO field

COMPVAL record, 66, 67

INFOSPEC record, 33, 35,
145

PAKVAL record, 64, 65, 142

PROCVAL record, 53, 55,107

INFOSPEC record, 17, 18, 27, 33,
35, 74, 145

INFO, see INFO field

RECTYPE, see RECTYPE
field

Integer type, 4, 7, 9, 15, 23, 106,
129, 130, 133, 135-137,

139, 141, 143-145, 148,
149

long, see Long integer type

short, see Short integer type

Interpolation, 15, 28, 145
ISOURCE field, 33, 144

L

Languages
human, 8, 15, 123, 126, 148

programming, 16, 31, 34, 67,
69, 124, 126

LENGTHS field, 34, 67, 68

Level (of dimensions), 13, 14, 21-
24, 26, 27, 47, 49, 50, 59,
73

Level 0 dimensions, 6, 13, 14, 18,

21-26, 33, 37, 40, 45, 46,

51, 53, 56, 57, 63, 74, 80,

169

86, 87, 89, 93, 101, 118,
127

Level 1 dimensions, 6, 13, 14, 18-

22, 24, 25, 33, 38, 41,

45-47, 51, 53, 56, 57, 63,

73.74.78.80.85, 86.88.

89, 91, 93, 100, 101,103,

105, 111, 115, 116, 118,

121, 122, 158
Level 2 dimensions, 6, 13, 14. 18-

22, 24, 25. 33, 38, 39.

41, 43, 45-47, 51, 53, 56,

57, 63, 73, 74, 78-80, 85,

86, 89, 93, 100, 101. 103.

105, 115, 158

Level 3 dimensions, 6. 14. 18. 19.

22.33.39, 45.47, 74.84,

86.87. 105. 106
LEVEL field

AUXRANGE record

APPLEV, 59, 60, 61

REFLEV, 59

DESCRIP record, 47, 48-50,

59, 60, 87, 99
DESCSUP record

DLEVEL, 50
DESCVAL record

DLEVEL, 49, 50, 75, 76,

78, 79, 81-83, 86-96, 98,
99, 101-104

Libraries (software), 9, 123-125,
147, 148, 158

Limitations of the df format, 4, 9,

21, 27, 127, 147

LLEN field, 32, 70, 71

Local conventions, 1, 15, 25, 106,

126, 129, 133, 141, 143-

145, 149-152

Logical type, 130, 132

Long integer type, 27, 28, 32, 70,

71, 74-83, 85-91, 93, 98,

99, 101, 102, 105, 107,

170 INDEX

110, 111, 114-122, 130,

!32, 133, 145, 150

M

MACHID field, 29, 31, 70, 71

MAGIC field, 29, 70, 71

Mapping (of indices), 24, 37-39

Metadata, 2, 4, 6-9, 12, 15, 16,

26,123,125-127, 129, 143,

148, 157

N

NAUDIT record, 33

NAUX field, 34, 57, 109, 110, 112-

114, 119

NBADS field, 33, 51, 103, 105

NCOMMS field, 33, 36
NDEX field

DESCRIP record

DEXSORT, 24, 47, 59, 60,
99

DESCRIP 1 record

DEXSORT, 41, 59, 60, 74,

75, 78, 85, 88, 90-92, 94-

98, 101, 102, 104

DESCRIP2 record, 24, 43, 59,

60, 75, 79, 82, 89, 90, 93,

98, 102, 104
DESCRIP3 record

DEXSORT, 24, 45, 59, 60,

82, 86, 87
DESCSUP record

DEXSORT, 24, 50
DESCVAL record

DEXSORT, 24, 49, 75, 76,

78, 79, 81-83, 86-99,101-
104

NDIM0 field, 33, 37, 45, 46, 53,
56, 57, 63, 74, 76, 80, 83,

88, 90, 91, 94, 101, 103,

110, 114, 119

NDIM1 field, 33, 38, 41, 45, 46,

51, 53, 56, 57, 63, 74,

76, 80, 83, 88, 90, 91,94,
101, 103, 110, 114, 119

NDIM2 field, 33, 39, 41, 43, 45,

46, 51, 56, 57, 63, 74,

76, 80, 83, 88, 90, 91,94,

101, 103, 110, 114, 119
NDIM3 field, 33, 39, 45, 74, 76,

80, 83, 88, 90, 91, 94,

101, 103, ll0, 114, 119

NDUPS field, 54, 56, 107

netCDF, 125, 158

Networks, 2, 7, 123, 126, 149
NINFO field, 33, 35

Nodes (audit), 27, 28, 33, 35, 108,

109, 124, 132, 144, 158
Nonauthoritative records, 19, 73,

93

NOTES field, 33, 36

NPACKS field, 34, 63

NPROCS field, 33, 53, 107

NUMAPP field, 57, 59, 60, 109

120, 122

Numeric codes, 16, 52, 125, 129,
148

NUMOBJECTS field, 30, 70, 71

NUMREF field, 57, 59, 109-122

NUMSUP field, 58, 62, 109, 112-

114, 119
AUXSPEC record, 111, ll5,

116, 118, I21, 122

Nybbles, 129, 135

O

OBJDESC record, 17, 18, 33, 35-

39, 41, 43, 45, 46, 51,

53, 56, 57, 63, 66-68, 74,

76, 80, 83, 88, 90, 91, 94,

INDEX

101, 103, 10.5, 107, 109,

110, 112 114, 119, 129,

135, 144

CMPNUM, .see CMPNUM field

COMCOD, see COMCOD field
ISOURCE. ,see ISOURCE field

NAUDIT, see NAUDIT field

NAUX, see NAUX fiekl

NBADS, see NBADS field

NCOMMS, see NCOMMS field

NDIM0, see NDIM0 field

NDIM1, see NDIM1 field

NDIM2, see NDIM2 field

NDIM3. see NDIM3 field

NINFO, see NINFO field

NPACKS, see NPACKS field

NPROCS, .see NPROCS field
RECTYPE. see RECTYPE

field

VARTYPE, see VARTYPE field

Operating systems, 4, 6, 7, 9, 18,

29, 31,149-151,153, 157,
158

Order

of dimensions, 14, 21, 24, 25,
33

of records, 16, 22, 23, 36, 38,

39, 43, 45, 47, 51, 53, 57,
63, 126, 158

Overhead, 6, 7, 124

Overlapping of ranges, 23, 38, 41,
45, 51, 53, 56, 57, 63,

103, 106

P

Packdata records, 17

Packgroup records, 17, 23, 34

Packing, 9, 12, 15, 20, 23, 34, 40,

63, 65, 68, 110,114,120,

124, 141, 142, 144, 148,

149, 155

171

parameters, 20, 142, 149,150
PAKBAD field, 65

PAKDAT record, 17, 20, 63, 65,
68

IRECTYPE, see RECTYPE
field

VALS, see VALS field

PAKFMT field, 65, 129
PAKFORM record, 17, 20, 64, 65,

129

PAKFMT, see PAKFMT field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE
field

PAKNUM field, 64, 65

PAKSPEC record, 17, 20, 25, 63,

65, 68, 106_ 129, 14I

CODE, see CODE field

DPAKFMT, see DPAKFMT
field

END, see END field

PAKNUM, ,see PAKNUM field

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

START, see START field

PAKVAL record, 17, 20, 64, 65,

142, 149

INFO, see INFO field

PAKBAD, see PAKBAD field

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

Paradigms, 2, 21, 148
Parameters

processing, see Processing

supplemental, see Supplemen-
tal information

task, see Tasks

Performance of computer systems,

6, 7, 9, 10, 125, 149, 151

PINDEX field, 56

172

Portability,2, 3, 6, 7, 9 12,123,
124,150

PRCFMTfield,55, 107, 129

PRCNUM field, 53, 55, 107

PROCDUP record, 17. 19, 25, 5,1.

56, 106

END, see END fieht
PINDEX. see PINDEX field

RECSORT. see RECSORT field

RECTYPE, set RECTYPE

field

START, scc START fieht

Processiag, 4, 12, 15, 19, 23, 25,
26.28.33, 53, 55, 56, 65,

106. 107. 110, 114, [20,

123. 12-1, 126. 133, 14-1.
1.15. 149 151

PROCFORM record. 17. 19. 26.

5-1.55. 107. 129

PRCFMT, see PRCFMT fieht

RECSORT, see RECSORT field
RECTYPE, see RECTYPE

field

Procgroup records, 17, 19.23, 28,
33

PROCSPEC record. 17. 19. 25.

27, 53, 54-56, 106, 107,

145

CODE, see CODE field

END, sec END field

NDUPS, see NDUPS field

PRCNUM, see PRCNUM field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE
field

START, see START field

PROCVAL record, 17, 19, 26, 53,
54, 55, 107, 150

INFO, see INFO field

RECSORT, see RECSORT field

RECTYPE, see RECTYPE

field

INDEX

Programming. 1 3. 7, 9 12, 22,
23, 27, 29, 69, 70, 108,

123-126. 144, 147. 148.

150, 151, 157

languages, se_ Languages

q

Quantity codes. 13.15.21,22, 26.
33.-10.42.46.47.58.60.

77 80. 84 86. 110, II-t.

116, 117, 120, 121, 123,
127. 129, 135. 1-t5, 150.

15l, 153. 154

R

Rank (of dimensions). 14.21.2-I.
37.39

RECHDR fiehl, 31. 70.71

RECSORT field

AUXRANGE record. 23.59.

109. 112 119, 121. 122

AI.'XSPEC record. 23.57.59,

61. 109 122

AUXSI'P record. 23.62

AUXVAL record, 23, 61. 110-

119. 121, 122
BADVAL record, 23.51. 104-

106

COMMENT record. 23, 36

DESCRIP record

DEXSORT. 47.99

DESCRIP 1 record

DEXSORT. 23, 41, 74.75,

81,82.88-92.94-98,101,

102. 104

DESCRIP3 record

DEXSORT. 23, 45

DESCSI.'P record

DEXSORT, 5O

DESCVAL record

INDEX

DEXSORT, 49, 75, 76, 81

83, 88 104

PAKFORM record, 23, 65

PAKSPEC record, 23, 63

PAKVAL record, 23, 65

PI_OCDUP record, 23, 56

PROCFORM record, 23, 55,
107

PROCSPEC record, 23, 53,

55, 56, 107

PROCVAL record, 23, 55, 107
RECTYPE field

AUDIT record, 35

AUXRANGE record, 59, 1 l 1,

115-118, 121, 122

AUXSPEC record, 57, 110,

i11, 114 118, 120-122

AUXSUP record, 62

AUXVAL record, 61,111,115-

118, 121, 122

BADVAL record, 51, 105

COMMENT record, 36

COMPDAT record, 67, 68

COMPFORM record, 67
COMPLEN record, 67

COMPSPEC record, 66

COMPVAL record, 67

DESCRIP record, 47
DESCRIP0 record, 40, 77, 78,

84, 85

DESCRIPI record, 41, 78, 85

DESCRIP2 record, 43, 79

DESCRIP3 record, 45, 86, 87

DESCSUP record, 50

DESCVAL record, 49, 78, 79,

86, 87

DIMSPEC0 record, 37, 76,
77, 83

DIMSPEC1 record, 38, 77,
84

DIMSPEC2 record, 39, 77,
84

173

DIMSPEC3 record, 39, 84

INFOSPEC record, 35

OBJDESC record, 33, 76, 83,

110, 114, 119
PAKDAT record, 68

PAKFORM record, 65

PAKSPEC record, 63
PAKVAL record, 65

PROCDUP record, 56

PROCFORM record, 55

PROCSPEC record, 53

PROCVAL record, 55

REGDAT record, 68

REFLEV field, 27, 59, 60, 110-

118, 121,122
REFNDEX field, 27, 59, 60, 110-

119, 121, 122

REGDAT record, 17, 20, 68

RECTYPE, see RECTYPE
field

VALS, see VALS field

Regdata records, 17

Registration with central author-

ity, 133, 145, 158

Reserved fields, 31-34, 37-40, 42,

44, 46, 48, 51, 54, 58, 60,

62, 66, 70, 71
Reusability, 3, 5, 123, 124

S

Scalar type, 21, 24, 37, 73, 74, 76,

91,101,127

Scaling, 9, 15, 141-143

Scanning a dataset, 29, 124, 148

Short integer type, 32, 70, 71,130,

132, 142, 150

Single precision floating-point type,

7, 28, 32, 74, 75, 77, 80,

82, 84, 88, 90-92, 94, 96-

98, 101, 103, 109, 112-

114, 119, 130-132

174

SITEIDS.TXTfile,149
Sites,1, 3, 4, 9, 15,27,28, 35,

108, 109, 126, 129, 133-

135, 141, 143-145, 147,

149 151,158

SLEN fiehl, 32, 70, 71

Software, 2, 3, 5, 7, 9-il, 123-

125, 147-149, 157, 158

Sources ofdata, 33, 133, 144,149,

150, 152, 153
SPECA field, 30, 70, 71

SPECB field, 31, 37-39, 41-43,

45 47, 51, 53, 56, 57, 63,

70, 71, 100

START field, 25, 69, 100, 147
AUXSPEC record, 26, 27, 57,

60, 61,109-115,117 122

BADVAL record, 25, 51,103-

106

DESCRIP1 record, 25, 41, 74,

75, 78, 81, 82, 85, 88-92,
94-98, 100-102, 104

DESCRIP3 record, 45, 82, 86,
87

PAKSPEC record, 63

PROCDUP record, 23, 56

PROCSPEC record, 23, 25,

53, 107

Storage, 6-9, 12, 15, 16, 124, 126,
149

STORG field

DESCRIP record, 47, 49

DESCRIP1 record, 42, 49, 75,

78, 81-83, 85, 88-92, 94-

98, 101, 102, 104

DESCRIP2 record, 43, 49, 75,

76, 79, 82, 89, 91, 93, 99,

103, 104

DESCRIP3 record, 46, 49, 86,
87

Strategic decisions, 2, 8, 10, 144,

147, 148

INDEX

Stream of bytes, 4, 9, 16, 31, 70,
152

String type, 18, 28, 33, 36, 52, 77,
84, 125, 131, 132, 152,
155

Structure type, 9, 126, 131, 157,
158

Subsets of the data, 4-6, 12, 19,

22, 23, 25, 28, 45, 53, 56,
124, 145, 158

SUPCODES.TXT file, 150

Super-extended precision floating-

point type, 130 132

Supercomputing, 4, 6, 7, 10, 30-

32, 152, i58

Supplemental information, 19, 20,

50, 62, 78, 79, 85, 86,
124, 143, 149, 150

parameters, 143, 150
SVALS field

AUXSUP record, 58, 62

DESCSUP record, 42, 43, 46,

47, 50

T

Tasks, 5, 27, 28, 35, 108, 109, 133,

144, 145, 147-151

parameters, 27, 144
Tensor type, 6, 21, 73, 87, 127

TEST record, 17, 18, 29, 37-39,

41-43, 45-47, 51, 56, 57,

63, 69, 71,100, 123, 126,
158

DLEN, see DLEN field

FLEN, see FLEN field

FPFORM, see FPFORM field

DP, see DP field

LLEN, see LLEN field

MACHID, see MACttID field

MAGIC, see MAGIC field

INDEX

NUMOBJECTS, see NUMOB-

JECTS field

RECHDR, see RECHDR field

SLEN, see SLEN field
SPECA, see SPECA field

BSWAP, see BSWAP field

CHARSET, see CHARSET
field

WSWAP, see WSWAP field

SPECB, see SPECB field

ARRORD, see ARRORD
field

IDXSTART, see IDXSTART
field

Text, editor, 8

Tradeoffs, 3, 5, 10, 147

Trails (audit), 5, 12, 15, 27, 35,
108

Translation, 8, 15, 126, 148-151

TREE field, 27, 33, 35, 108, 109,

132, 144
Tree structure, 5, 12, 18, 27, 28,

35, 108, 109, 124, 133,
158

U

Understandability, 3, 4, 7-9, 14,

15, 21, 22, 123
UNITS field

AUXSPEC record, 58, 109-
122

DESCRIP record, 47, 136

DESCRIP0 record, 40, 74, 77,

78, 81, 84, 85, 88, 90, 91,

94, 101, 104, 136

DESCRIP1 record, 42, 74, 75,

78, 82, 83, 85, 88-92, 94-

97, 101, 102, 104, 136
DESCRIP2 record, 43, 75, 76,

79, 82, 89, 90, 93, 99,

102, 104, 136

175

DESCRIP3 record, 46, 86, 87,
136

UNITS.TXT file, 149, 150

Unix, 4, 6, 30, 70, 159

Unnmmnn.PRC file, 150, 151
Unnnnnnn.SRC file, 150, 151

Unnnnnnn.TSK file, 150, 151

Unnnnnnn.UNT file, 150, 151

Unnnnnnn.VAR file, 150, 151

V

VALS field

COMPDAT record, 67, 68

PAKDAT record, 63, 65, 68

REGDAT record, 68

VALUE field, 51, 65, 103-106
VARTYPE field

DESCRIP0 record, 40, 74, 77,

78, 81, 84, 85, 88, 90, 91,
94, 101, 103

OBJDESC record, 33

VARTYPES.TXT file, 149, 150

Vector type, 6, 13, 14, 21, 25, 35,
51, 60, 73, 80, 89, 104,

106, 109, ll2, 127

W

WSWAP field, 30

X

XDR (eXternal Data Representa-

tion), 16, 29-32,123,124,
131, 132, 152

*U.S. GOVERNMENT PRINTING OFFICE: 1993-728-150/60022

rr

REPORT DOCUMENTATION PAGE
Form Appro_,ed

OMB NO 0_'04-0T88

i. AGENCY USE ONLY' (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

March 1993

df: A Proposed Data Format Standard

6. AUTHOR(S)

Leslie R. Lait, Eric R. Nash, and Paul A. Newman

7'i PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARY NC)TES

3. REPORT TYPE AND DATES COVERED

Technical H_mqrand_m
S. FUNDING NUMBERS

Code 910

8. PERFORMING ORGANIZATION
REPORT NUMBER

93B00047

Code 916

10. SPONSORING _MONITORING
AGENCY REPORT NUMBER

NASA TM-4467

Lait: universities Space Research Association, Columbia, Maryland;

Nash: Applied Research Corporation, Landover, Maryland;

Newman: Goddard S_ace Fli@ht Center, Greenbelt, Maryland

12a. OISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 59

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 word_)

A standard is proposed describing a portable format for electronic exchange of data

in the physical sciences. Writing scientific data in a standard format has three

basic advantages: portability; the ability to use metadata to aid in interpretation

of the data (understandability); and reusability. An improperly formulated standard

format tends towards four disadvantages- (i) it can be inflexible and fail to allow

the user to express his data as needed; (2) reading and writing such datasets can

involve high overhead in computing time and storage space; (3) the format may be

accessible only on certain machines using certain languages; and (4) under some

circumstances it may be uncertain whether a given dataset actually conforms to the

standard.

A format has been designed which enhances these advantages and lessens the

disadvantages. The fundamental approach is to allow the user to make her own choices

regarding strategic tradeoffs to achieve the performance desired in her local

environment. The choices made are encoded in a specific and portable way in a set of

records. A fully detailed description and specification of the format is given, and

examples are used to illustrate various concepts. Implementation is discussed.

14, SUBJECT TERMS

Data Format; Computing Standards; Data Storage

17. SECURITY CLA'SSIFICATION

OF REPORT

Unclassified

NSN 7540-01 280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

184

16. PRICE CODE
A09

20, LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev 2-89)
Preset,bed by ANSI $_d Z39-tB
298- _0 2

